accumarray like function
accum, a function like MATLAB’s accumarray
NumPy doesn’t include a function that is equivalent to MATLAB’s accumarray
function. The following function, accum
, is close.
Note that accum
can handle n-dimensional arrays, and allows the data type of the result to be specified.
from itertools import product
import numpy as np
def accum(accmap, a, func=None, size=None, fill_value=0, dtype=None):
"""
An accumulation function similar to Matlab's `accumarray` function.
Parameters
----------
accmap : ndarray
This is the "accumulation map". It maps input (i.e. indices into
`a`) to their destination in the output array. The first `a.ndim`
dimensions of `accmap` must be the same as `a.shape`. That is,
`accmap.shape[:a.ndim]` must equal `a.shape`. For example, if `a`
has shape (15,4), then `accmap.shape[:2]` must equal (15,4). In this
case `accmap[i,j]` gives the index into the output array where
element (i,j) of `a` is to be accumulated. If the output is, say,
a 2D, then `accmap` must have shape (15,4,2). The value in the
last dimension give indices into the output array. If the output is
1D, then the shape of `accmap` can be either (15,4) or (15,4,1)
a : ndarray
The input data to be accumulated.
func : callable or None
The accumulation function. The function will be passed a list
of values from `a` to be accumulated.
If None, numpy.sum is assumed.
size : ndarray or None
The size of the output array. If None, the size will be determined
from `accmap`.
fill_value : scalar
The default value for elements of the output array.
dtype : numpy data type, or None
The data type of the output array. If None, the data type of
`a` is used.
Returns
-------
out : ndarray
The accumulated results.
The shape of `out` is `size` if `size` is given. Otherwise the
shape is determined by the (lexicographically) largest indices of
the output found in `accmap`.
Examples
--------
>>> from numpy import array, prod
>>> a = array([[1,2,3],[4,-1,6],[-1,8,9]])
>>> a
array([[ 1, 2, 3],
[ 4, -1, 6],
[-1, 8, 9]])
>>> # Sum the diagonals.
>>> accmap = array([[0,1,2],[2,0,1],[1,2,0]])
>>> s = accum(accmap, a)
array([9, 7, 15])
>>> # A 2D output, from sub-arrays with shapes and positions like this:
>>> # [ (2,2) (2,1)]
>>> # [ (1,2) (1,1)]
>>> accmap = array([
[[0,0],[0,0],[0,1]],
[[0,0],[0,0],[0,1]],
[[1,0],[1,0],[1,1]],
])
>>> # Accumulate using a product.
>>> accum(accmap, a, func=prod, dtype=float)
array([[ -8., 18.],
[ -8., 9.]])
>>> # Same accmap, but create an array of lists of values.
>>> accum(accmap, a, func=lambda x: x, dtype='O')
array([[[1, 2, 4, -1], [3, 6]],
[[-1, 8], [9]]], dtype=object)
"""
# Check for bad arguments and handle the defaults.
if accmap.shape[:a.ndim] != a.shape:
raise ValueError("The initial dimensions of accmap must be the same as a.shape")
if func is None:
func = np.sum
if dtype is None:
dtype = a.dtype
if accmap.shape == a.shape:
accmap = np.expand_dims(accmap, -1)
adims = tuple(range(a.ndim))
if size is None:
size = 1 + np.squeeze(np.apply_over_axes(np.max, accmap, axes=adims))
size = np.atleast_1d(size)
# Create an array of python lists of values.
vals = np.empty(size, dtype='O')
for s in product(*[range(k) for k in size]):
vals[s] = []
for s in product(*[range(k) for k in a.shape]):
indx = tuple(accmap[s])
val = a[s]
vals[indx].append(val)
# Create the output array.
out = np.empty(size, dtype=dtype)
for s in product(*[range(k) for k in size]):
if vals[s] == []:
out[s] = fill_value
else:
out[s] = func(vals[s])
return out
Examples
A basic example–sum the diagonals (with wrapping) of a 3 by 3 array:
from numpy import array, prod
a = array([[1,2,3],[4,-1,6],[-1,8,9]])
accmap = array([[0,1,2],[2,0,1],[1,2,0]])
s = accum(accmap, a)
s
array([ 9, 7, 15])
Accumulate using multiplication, going from a 3 by 3 array to 2 by 2 array:
accmap = array([
[[0,0],[0,0],[0,1]],
[[0,0],[0,0],[0,1]],
[[1,0],[1,0],[1,1]],
])
accum(accmap, a, func=prod, dtype=float)
array([[ -8., 18.],
[ -8., 9.]])
Create an array of lists containing the values to be accumulated in each position in the output array:
accum(accmap, a, func=lambda x: x, dtype='O')
array([[[1, 2, 4, -1], [3, 6]],
[[-1, 8], [9]]], dtype=object)
Use accum
to arrange some values from a 1D array in a 2D array (note that using accum
for this is overkill; fancy indexing would suffice):
subs = np.array([[k,5-k] for k in range(6)])
subs
array([[0, 5],
[1, 4],
[2, 3],
[3, 2],
[4, 1],
[5, 0]])
vals = array(range(10,16))
accum(subs, vals)
array([[ 0, 0, 0, 0, 0, 10],
[ 0, 0, 0, 0, 11, 0],
[ 0, 0, 0, 12, 0, 0],
[ 0, 0, 13, 0, 0, 0],
[ 0, 14, 0, 0, 0, 0],
[15, 0, 0, 0, 0, 0]])