LOGISTIC REGRESSION WITH MNIST
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
print ("PACKAGES LOADED")
PACKAGES LOADED
DOWNLOAD AND EXTRACT MNIST DATASET
mnist = input_data.read_data_sets('data/', one_hot=True)
trainimg = mnist.train.images
trainlabel = mnist.train.labels
testimg = mnist.test.images
testlabel = mnist.test.labels
print ("MNIST loaded")
Extracting data/train-images-idx3-ubyte.gz
Extracting data/train-labels-idx1-ubyte.gz
Extracting data/t10k-images-idx3-ubyte.gz
Extracting data/t10k-labels-idx1-ubyte.gz
MNIST loaded
CREATE TENSOR GRAPH FOR LOGISTIC REGRESSION
x = tf.placeholder("float", [None, 784])
y = tf.placeholder("float", [None, 10])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
actv = tf.nn.softmax(tf.matmul(x, W) + b)
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(actv), reduction_indices=1))
learning_rate = 0.01
optm = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
PREDICTION AND ACCURACY
pred = tf.equal(tf.argmax(actv, 1), tf.argmax(y, 1))
accr = tf.reduce_mean(tf.cast(pred, "float"))
init = tf.initialize_all_variables()
TRAIN MODEL
training_epochs = 50
batch_size = 100
display_step = 5
sess = tf.Session()
sess.run(init)
for epoch in range(training_epochs):
avg_cost = 0.
num_batch = int(mnist.train.num_examples/batch_size)
for i in range(num_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(optm, feed_dict={x: batch_xs, y: batch_ys})
feeds = {x: batch_xs, y: batch_ys}
avg_cost += sess.run(cost, feed_dict=feeds)/num_batch
if epoch % display_step == 0:
feeds_train = {x: batch_xs, y: batch_ys}
feeds_test = {x: mnist.test.images, y: mnist.test.labels}
train_acc = sess.run(accr, feed_dict=feeds_train)
test_acc = sess.run(accr, feed_dict=feeds_test)
print ("Epoch: %03d/%03d cost: %.9f train_acc: %.3f test_acc: %.3f"
% (epoch, training_epochs, avg_cost, train_acc, test_acc))
print ("DONE")
Epoch: 000/050 cost: 1.176559254 train_acc: 0.870 test_acc: 0.852
Epoch: 005/050 cost: 0.440937506 train_acc: 0.930 test_acc: 0.895
Epoch: 010/050 cost: 0.383336526 train_acc: 0.900 test_acc: 0.904
Epoch: 015/050 cost: 0.357268913 train_acc: 0.880 test_acc: 0.909
Epoch: 020/050 cost: 0.341493352 train_acc: 0.970 test_acc: 0.912
Epoch: 025/050 cost: 0.330508839 train_acc: 0.890 test_acc: 0.914
Epoch: 030/050 cost: 0.322364672 train_acc: 0.880 test_acc: 0.916
Epoch: 035/050 cost: 0.315942195 train_acc: 0.960 test_acc: 0.917
Epoch: 040/050 cost: 0.310731307 train_acc: 0.910 test_acc: 0.918
Epoch: 045/050 cost: 0.306349064 train_acc: 0.970 test_acc: 0.919
DONE