import tensorflow as tf
import numpy as np
from tensorflow.contrib import rnn
from tensorflow.examples.tutorials.mnist import input_data
input_vec_size = lstm_size = 28
time_step_size = 28
batch_size = 128
test_size = 256
def init_weights(shape):
return tf.Variable(tf.random_normal(shape, stddev=0.01))
def model(X, W, B, lstm_size):
XT = tf.transpose(X, [1, 0, 2])
XR = tf.reshape(XT, [-1, lstm_size])
X_split = tf.split(XR, time_step_size, 0)
lstm = rnn.BasicLSTMCell(lstm_size, forget_bias=1.0, state_is_tuple=True)
outputs, _states = rnn.static_rnn(lstm, X_split, dtype=tf.float32)
return tf.matmul(outputs[-1], W) + B, lstm.state_size
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels
trX = trX.reshape(-1, 28, 28)
teX = teX.reshape(-1, 28, 28)
X = tf.placeholder("float", [None, 28, 28])
Y = tf.placeholder("float", [None, 10])
W = init_weights([lstm_size, 10])
B = init_weights([10])
py_x, state_size = model(X, W, B, lstm_size)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y))
train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost)
predict_op = tf.argmax(py_x, 1)
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(100):
for start, end in zip(range(0, len(trX), batch_size), range(batch_size, len(trX)+1, batch_size)):
sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end]})
test_indices = np.arange(len(teX))
np.random.shuffle(test_indices)
test_indices = test_indices[0:test_size]
print(i, np.mean(np.argmax(teY[test_indices], axis=1) ==
sess.run(predict_op, feed_dict={X: teX[test_indices]})))