3.1、内存管理基础

1、内存管理的概念

内存管理是操作系统设计中最重要和最复杂的内容之一。计算机硬件一直在发展,内容容量也在不断增长,但是仍然不可能将所有用户进程和系统所需要的全部程序和数据全部放入主存中,所以操作系统必须将内存空间进行合理的化肥和有效的动态分配。操作系统对内存的划分和动态分配,就是内存管理的概念。

有效的内存管理在多道程序设计中非常重要,不仅方便用户使用存储器、提高内存利用率,还可以通过虚拟技术从逻辑上扩充存储器。

内存管理的功能有:

l 内存空间的分配与回收,包括内存的分配和共享。

l 地址转换,把逻辑地址转换成相应的物理地址。

l 内存空间的扩充,利用虚拟技术或自动覆盖技术,从逻辑上扩充内存。

l 存储保护,保证各道作业在各自存储空间内运行,互不干扰。

在进行具体的内存管理之前,需要了解进程运行的基本原理和要求。

创建进程首先要将程序和数据装入内存。将用户原程序变成可在内存中执行的程序,通常需要以下几个步骤。

l 编译,由编译程序将用户源代码编译成若干个目标模块。

l 链接,由链接程序将编译后形成的一组目标模块,以及所需库函数链接,形成完整的装入模块。

l 装入,由装入程序将装入模块装入内存。

程序的链接有以下三种方式:

l 静态链接:在程序运行之前,先将各目标模块及它们所需的库函数链接成一个完整的可执行程序,以后不再拆开。

l 装入时动态链接:将用户源程序编译后所得到的一组目标模块,再装入内存时,采用边装入变链接的方式。

l 运行时动态链接:对某些目标模块的连接,是在程序执行中需要该目标模块时,才对她进行链接。其优点是便于修改和更新,便于实现对目标模块的共享。

内存的装入模块再装入内存时,同样有以下三种方式:

1)绝对装入。在编译时,如果知道程序将驻留在内存的某个位置,编译程序将产生绝对地址的目标代码。绝对装入程序按照装入模块的地址,将程序和数据装入内存。装入模块被装入内存后,由于程序中的逻辑地址与实际地址完全相同,故不需对程序和数据的地址进行修改。

绝对装入方式只适用于单道程序环境。另外,程序中所使用的绝对地址,可在编译或汇编时给出,也可由程序员直接赋予。

2)可重定位装入。在多道程序环境下,多个目标模块的起始地址通常都是从0开始,程序中的其他地址都是相对于起始地址的,此时应采用可重定位装入方式。根据内存的当前情况,将装入模块装入到内存的适当位置。装入时对目标程序中指令和数据的修改过程称为重定位,地址变换通常是装入时一次完成,所以成为静态重定位。

其特点是在一个作业装入内存时,必须分配器要求的全部内存空间,如果没有足够的内存,就不能装入,此外一旦作业进入内存后,在整个运行期间,不能在内存中移动,也不能再申请内存空间。

3)动态运行时装入,也成为动态重定位,程序在内存中如果发生移动,就需要采用动态的装入方式。

动态运行时的装入程序在把装入模块装入内存后,并不立即把装入模块中的相对地址转换为绝对地址,而是把这种地址转换推迟到程序真正要执行时才进行。因此,装入内存后的所有地址均为相对地址,这种方式需要一个重定位寄存器的支持。

其特点是可以将程序分配到不连续的存储区中;在程序运行之前可以只装入它的部分代码即可运行,然后在程序运行期间,根据需要动态申请分配内存;便于程序段的共享,可以向用户提供一个比存储空间大得多的地址空间。

编译后,一个目标程序所限定的地址范围称为改程序的逻辑地址空间。编译程序在对一个源程序进行编译时,总是从0号单元开始为期分配地址,地址空间中的所有地址都是相对起始地址0的,因而逻辑地址也称为相对地址。用户程序和程序员只需要知道逻辑地址,而内存管理的具体机制则是透明的,这些只有系统编程人员才会涉及。不同进程可以有相同的逻辑地址,因为这些相同的逻辑地址可以映射到主存的不同位置。

物理地址空间实质内存中物理单位的集合,它是地址转换的最终地址,进程在运行时执行指令和访问数据最后都要通过物理地址来存取主存。当装入程序将可执行代码装入内存时,必须通过地址转换将逻辑地址转换成物理地址,这个过程称为地址重定位。

内存分配前,需要保护操作系统不受用户进程的影响,同时保护用户进程不受其他用户进程的影响。通过采用重定位寄存器和界地址寄存器来实现这种保护。重定位寄存器含最小的物理地址值,界地址寄存器含逻辑地址值。每个逻辑地址值必须小于界地址寄存器。内存管理机构动态地将逻辑地址加上重定位寄存器的值后映射成物理地址,再送交内存单元。

当CPU调度程序选择进程执行时,派遣程序会初始化重定位寄存器和界地址寄存器。每个地址都需要与寄存器进行核对,可以保证操作系统和其他用户程序及数据不被该进程运行所影响。

2、覆盖与交换

覆盖与交换技术是在多道程序环境下用来扩充内存的两种方法。覆盖技术主要用在早期的操作系统中,而交换技术则在现代操作系统中仍具有较强的生命力。

早期的计算机系统中,主存容量很小,虽然住村中仅存放一道用户程序,但是存储空间放不下用户进程的现象也经常发生,这一矛盾可以用覆盖技术来解决。其基本思想是:由于程序运行时并非任何时候都要访问程序和数据的各个部分,因此可以把用户空间分成一个固定区和若干个覆盖区。将经常活跃的部分放在固定区,其余部分按调用关系分段。首先将那些将要访问的段放入覆盖区,其他段放在外存中,在需要调用时,系统再将其掉入覆盖区,替换其中原有的段。

交换的基本思想是:把处于等待状态(或在CPU调度原则下被剥夺运行权利)的进程从内存移到辅存,把内存空间腾出来,这一过程又叫换出;把准备好竞争CPU运行的进程从辅存移到内存,这一过程又称为换入。

例如,有一个CPU采用时间片轮转调度算法的多道程序环境。时间片到,内存管理器将刚刚执行过的进程换出,将另一进程换入到刚刚释放的内存空间中。同时,CPU调度器可以将时间片分配给其他已在内存中的进程。每个进程用完时间片都与另一进程交换。理想情况下。内存管理器的交换过程速度足够快,总有进程在内存中可以执行。

有关交换需要注意以下几个问题:

l 交换需要备份存储,通常是快速磁盘。它必须足够大,并且提供对这些内存影响的直接访问。

l 为了有效使用CPU,需要每个进程的执行时间比交换时间长,而影响交换时间的主要是转移时间。转移时间与所见换的内存空间成正比。

l 如果换出进程,必须确保该进程是完全处于空闲状态。

l 交换空间通常作为磁盘的一整块,且独立与文件系统,因此使用就可能很快。

l 交换通常在有许多进程运行且内存空间吃紧的时候开始启动,而系统负荷降低就暂停。

l 普通的交换使用不多,但交换策略的某些变种在许多系统中仍发挥作用。

交换技术主要是在不同进程之间进行,而覆盖则用于同一个程序中。由于覆盖技术要求给程序段之间的覆盖结构,使得其对用户和程序员不透明,所以对于主存无法存放用户程序的矛盾,现在操作系统是通过虚拟内存技术来解决的,覆盖技术则已成为历史;而交换技术在现代操作系统中仍具有较强的生命力。

3、连续分配管理方式

连续分配方式,是指为一个用户程序分配一个连续的内存空间。它主要包括单一连续分配、固定分区分配和动态分区分配。

内存在此方式下分为系统区和用户区,系统区仅提供给操作系统使用,通常在低地址部分;用户区是为用户提供的除系统外的内存空间。这种方式无需进行内存保护。

这种方式的优点是简单、无外部碎片,可以采用覆盖技术,不需要额外的技术支持。缺点是只能用于单用户、单任务的操作系统中,有内部碎片,存储器的利用率极低。

固定分区分配是最简单的一种多道程序存储管理方式,它将内存用户空间划分为若干个固定大小的区域,每个分区只装入一道作业。当有空闲分区时,便可以再从外存的后备队列中选择适当大小的作业装入该分区。如此循环。

固定分区分配在划分分区时,有两种不同的方法:

l 分区大小相等:用于利用一台计算机去控制多个相同对象的场合。

l 分区大小不等:划分为含有多个较小的分区、适量的中等分区及少量的大分区。

为了便于内存分配,通常将分区按大小排队,并为之建立一张分区使用表,其中个表项包括每个分区的起始地址、大小及状态。当有用户程序要装入时,便检索该表,已找到合适的分区给与分配并将其状态置为“已分配“。未找到合适分区则拒绝为该用户程序分配内存。

这种分区方式存在两个问题:一个程序可能太大而放不进任何一个分区中,这是用户不得不使用覆盖技术来使用内存空间;二是主存利用率低,当程序小于固定分区大小时,也占用了一个完整的内存分区空间,这样分区内部有空间浪费。这种现象成为内部碎片。

固定分区可用于多道程序设计最简单的存储分配,但不能实现多进程共享一个主存区,所以存储空间利用率低。固定分区分配很少用于现在通用的计算机,但在某些用于控制多个相同对象的控制系统中仍发挥着一定的作用。

动态分区分配又称为可变分区分配,是一种动态划分内存的分区方法。这种分区方法预先将内存划分,而是在进程装入内存时,根据进程的大小动态的建立分区,并使分区的大小正好适合进程的需要。因此系统中分区的大小和数目是可变的。

动态分区在开始分配时是很好的,但是之后会导致内存中出现许多小的内存块。随着时间的推移,内存中会产生越来越多的碎片,内存的利用率随之下降。这种现象称之为外部碎片现象,指在所有分区外的存储空间会变成越来越多的碎片,这与固定分区中的内部碎片正好相对。克服外部碎片可以通过紧凑技术来解决,就是操作系统不时地对进程进行移动和整理。但是这需要动态定位的支持,且相对费时。紧凑的过程实际上类似于windows系统中的磁盘整理程序,只不过后者是对外存空间的紧凑。

在津城装入或换入主存时。如果内存中有多个足够大的空闲块,操作系统必须确定分配那个内存块给进程使用,这就是动态分区的分配策略。,考虑以下几种算法:

1)首次适应算法:空闲分区以地址递增的次序链接。分配内存时顺序查找,找到大小能满足要求的第一个空闲分区。

2)最佳适应算法:空闲分区按容量递增形成分区链,找到第一个能满足要求的空闲分区。

3)最坏适应算法:有称最大适应算法,空闲分区以容量递减次序链接。找到第一个能满足要求的空闲分区,也就是挑选最大的分区。

4)临近适应算法:又称循环首次适应算法,由首次适应算法演变而成。不同之处是分配内存时从此查找结束的位置开始继续查找。

在这几种方法中,首次适应算法不仅是最简单的,而且通常是最好和最快的。在UNIX系统的最初版本中,就是使用首次适应算法为进程分配内存空间,其中使用数组的数据结构(而非链表)来实现。不过,首次适应算法会使得内存的低地址部分出现很多小的空闲分区,而每次分配查找时,都要经过这些分区。

临近适应算法试图解决这一问题,但实际上,它常常会导致在内存的末尾分配空间,分裂成小碎片。它通常比首次适应算法的结果要差。

最佳适应算法虽然称为最佳,但是性能通常很差,因为每次最佳的分配会留下最小的内存块,它会产生最多的碎片。

最坏适应算法与最佳适应算法相反,选择最大的可用块,这看起来最不容易产生碎片,但是却把最大的连续内存划分开,会很快导致没有可用的大的内存块,因此性能非常差。

以上内存分区管理方法有一共同特点,即用户进程在主存中都是连续存放的。

4、非连续分配管理方式

非连续分配方式允许一个程序分散的装入不相邻的内存分区中,根据分区的大小是否固定分为分页存储管理方式和分段存储管理方式。

分页存储管理方式中,又根据运行作业时是否要把作业的所有页面都装入内存才能运行分为基本分页存储管理和请求分页存储管理方式。

固定分区会产生内部碎片,动态分区会产生外部碎片,两种技术对内存的利用率都比较低。我们希望内存的使用能尽量避免碎片的产生,这就引出了分页思想:把主存空间划分为大小相等且固定的块,块相对较小,作为主存的基本单位。每个进程也以块为单位进行划分,进程在执行时,以块为单位逐个申请主存中的块空间。

1)分页存储的几个基本概念

1页面和页面大小。进程中的块称为页,内存中的块称为页框。外存也以同样单位划分,直接称为块。进程在执行时需要申请主存空间,就是要为每个页面分配主存中的可用页框,这就产生了页和页框的一一对应。

为了方便地址转换,页面大小应是2的整数幂。同时页面大小应当适中。如果页面太小,会是进程的页面数过多,这样页表就过长,占用大量内存,而且也会增加硬件地址转换的开销,降低页面换入换出的效率。页面过大又会是页面碎片过大,降低内存利用率。所以页面的大小应该适中,考虑到空间效率和时间效率。

2地质结构。分页存储管理的地质结构包含两部分:前一部分为页号,后一部分为页内偏移量W。地址长度为32位,其中0~11为页内地址,即每页大小为4kB;12~31位为页号,地址空间最多允许有2 20页。

3页表。为了便于在内存中找到进程的每个页面所对应的物理块,系统为每个进程建立一张页表,记录页面在内存中对应的物理块号,页表一般存放在内存中。

在配置了页表后,进程执行时,通过查找该表,即可找到每页在内存中中的物理块号。可见,页表的作用是实现从页号到物理块号的地址映射。

2)基本地址变换机构

地址变换机构的任务是将逻辑地址中的页号,转换为内存中物理块号,地址变换是借助于页表实现的。

在系统中通常设置一个页表寄存器PTR,存放页表在内存的初值和页表长度。

逻辑地址到物理地址的变换过程如下:

1地址变换机构自动将有效地址分为页号和页内偏移量两部分,再用页号去检索页表。在执行检索之前,先将页号与页表长度比较,如果页号大于或等于页表长度,则表示地址越界并中断。

2若未越界,则将页表始址与页号和页表项长度的乘积相加,便得到该表项在页表中的位置,于是可从中得到该页的物理块号。

3与此同时,在将有效地址中的页内偏移量送入物理地址寄存器的块内地址字段中。

以上整个地址变换过程均是由硬件自动完成的。

下面讨论分页管理方式存在的两个主要问题:1每次访存操作都需要进行逻辑地址到物理地址的转换,地址转换过程必须足够快,否则访存速度会降低;2每个进程引入了页表,用于存储映射机制,页表不能太大,否则内存利用率会降低。

3)具有快表的地址变换机构

由上面介绍的地址变换过程可知,若页表全部放在内存中,则要存取一个数据或一条指令至少要访问两次内存:一次是访问页表,确定要存取的数据或指令的物理地址,第二次才根据该地址存取数据或指令。显然,这种方法比通常执行指令的速度慢了一半。

为此,在地址变换机构中增设了一个具有并行查找能力的高速缓冲存储器——快表,又称联想寄存器TLB,用以存放当前访问的若干页表项。与此对应,主存中的页表也常称为慢表。

在具有快表的分页机制中,地址的变换过程:

1CPU给出有效地址后,由硬件进行地址转换,并将页号送入高速缓存寄存器,并将此页号与快表中的所有页号同时进行比较。

2如果有找到匹配的页号,说明索要访问的页表项在快表中,则可以直接从中读出该页对应的页框号,送到屋里地址寄存器。这样存取数据可以直接一次访存实现。

3如果没有找到,则需要访问主存中的页表,在读出页表项后,应同时将其存入快表中,以供后面可能的再次访问。但是如果快表已满,就必须按照一定的算法对其中旧的页表项进行替换。注意,有些处理器设计为快表和主存同时查找,如果在快表中匹配成功则终止主存中的查找。

一般快表的命中率可以达到90%,这样,分页带来的速度损失就降到10%。快表的有效性是基于著名的局部性原理。这在后面的虚拟内存中将会具体讨论。

4)两级页表

第二个问题:由于引入了分页管理,进程在执行时不需要将所有页调入内存页框中,而只要将保存有映射关系的页表调入内存即可。但是我们仍然需要考虑页表的大小。如果页表太大,肯定是降低了内存利用率的;从另一方面来说,程序所有的页表项也并不需要同时保存在内存中,因为在大多数情况下,映射所需要的页表都再也表的同一个页面中。

我们将页表映射的思想进一步延伸,就可以得到二级分页:将页表的10页空间也进行地址映射,建立上一级页表,所以上一级页表只需要一页就足够。在进程执行时,只需要将这一页上一级页表调入内存即可,进程的页表和进程本身的页面,可以在后面的执行中再调入内存。

分页管理方式是从计算机的角度考虑设计的,以提高内存的利用率,提升计算机的性能,且分页通过硬件机制实现,对用户完全透明;而分段管理方式的提出则考虑了用户和程序员,以满足方便编程、信息保护和共享、动态增长及动态链接等多方面的需要。

1)分段。

短时系统按照用户进程中的自然段划分逻辑空间。例如,用户进程由主程序、两个字程序、栈和一段数据组成,于是可以把这个用户进程划分为5个段,每段从0开始编址,并采用一段连续的地址空间(段内要求连续,段间不要求连续),其逻辑地址由两部分组成:段号与段内偏移量,分别记为S、W。

段号为16位,段内偏移量为16位,则一个作业最多可有2 16=65536个段,最大段长64KB。

在页式系统中,逻辑地址的页号和页内偏移量对用户是透明的;但在段式系统中,段号和段内偏移量必须由用户显示提供,在高级程序设计语言中,这个工作由编译程序完成。

2)段表。

每个进程都有一张逻辑空间与主存空间映射的段表,其中每一段表项对应进程的一个段,段表项纪录路该段在内存中的起始地址和段的长度。

在配置了段表后,执行中的进程可通过查找段表,找到每个段所对应的内存区。可见,段表用于实现从逻辑端段到物理内存区的映射。

3)地址变换机构

为了实现进程从逻辑地址到物理地址的变换功能,在系统中设置了段表寄存器,用于存放段表始址和段表长度TL。在进行地质变换时,系统将逻辑地址中的段号,与段表长度TL比较。若段号大雨段表长度,表示短号太大,访问越界,于是产生越界中断信号。若未越界,则根据段表的始址和该段的段号,计算出该段对应段表项的位置,从中读出该段在内存中的起始地址。然后,在检查段内地址W是否超过该段的段长SL。若超过,同样发出越界中断信号。若未越界,则将该段的基址d与段内地址相加,即可得到要访问的内存物理地址。

页式存储管理能有效的提高内存利用率,而分段存储管理能反应程序的逻辑结构并有利于段的共享。如果将这两种存储管理方法结合起来,就形成了段页式存储管理方式。

在段页式系统中,作业的地址空间首先被分成若干个逻辑段,每段都有自己的段号,然后再将每一段分成若干个大小固定的页。对内存空间的管理仍然和分页存储管理一样,将其分成若干个和页面大小相同的存储块,对内存的分配以存储块为单位。

在段页式系统中,作业的逻辑地址分为三部分:段号、页号和页内偏移量。

为了实现地址变换,系统为每个进程建立一张段表,而每个分段有一张页表。段表表项中至少包括段号、页表长度和页表起始地址,页表表项中至少包括页号和块号。此外,系统中还应有一个段表寄存器,指出作业的段表起始地址和段表长度。

在进行地址变换时,首先通过段表查到页表起始地址,然后通过页表找到帧号,最后形成物理地址。进行一次访问实际需要三次访问主存,这里同样可以使用快表提供加快速度,其关键字由段号、页号组成,值是对应的页帧号和保护码。