package cipher
import "crypto/cipher"
cipher包实现了多个标准的用于包装底层块加密算法的加密算法实现。
参见http://csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html和NIST Special Publication 800-38A。
Index
- type Block
- type BlockMode
- func NewCBCDecrypter(b Block, iv []byte) BlockMode
- func NewCBCEncrypter(b Block, iv []byte) BlockMode
- type Stream
- func NewCFBDecrypter(block Block, iv []byte) Stream
- func NewCFBEncrypter(block Block, iv []byte) Stream
- func NewCTR(block Block, iv []byte) Stream
- func NewOFB(b Block, iv []byte) Stream
- type StreamReader
- func (r StreamReader) Read(dst []byte) (n int, err error)
- type StreamWriter
- func (w StreamWriter) Write(src []byte) (n int, err error)
- func (w StreamWriter) Close() error
- type AEAD
- func NewGCM(cipher Block) (AEAD, error)
Examples
- NewCBCDecrypter
- NewCBCEncrypter
- NewCFBDecrypter
- NewCFBEncrypter
- NewCTR
- NewOFB
- StreamReader
- StreamWriter
type Block
type Block interface {
// 返回加密字节块的大小
BlockSize() int
// 加密src的第一块数据并写入dst,src和dst可指向同一内存地址
Encrypt(dst, src []byte)
// 解密src的第一块数据并写入dst,src和dst可指向同一内存地址
Decrypt(dst, src []byte)
}
Block接口代表一个使用特定密钥的底层块加/解密器。它提供了加密和解密独立数据块的能力。
type BlockMode
type BlockMode interface {
// 返回加密字节块的大小
BlockSize() int
// 加密或解密连续的数据块,src的尺寸必须是块大小的整数倍,src和dst可指向同一内存地址
CryptBlocks(dst, src []byte)
}
BlockMode接口代表一个工作在块模式(如CBC、ECB等)的加/解密器。
func NewCBCEncrypter
func NewCBCEncrypter(b Block, iv []byte) BlockMode
返回一个密码分组链接模式的、底层用b加密的BlockMode接口,初始向量iv的长度必须等于b的块尺寸。
Example
key := []byte("example key 1234")
plaintext := []byte("exampleplaintext")
// CBC mode works on blocks so plaintexts may need to be padded to the
// next whole block. For an example of such padding, see
// https://tools.ietf.org/html/rfc5246#section-6.2.3.2\. Here we'll
// assume that the plaintext is already of the correct length.
if len(plaintext)%aes.BlockSize != 0 {
panic("plaintext is not a multiple of the block size")
}
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
ciphertext := make([]byte, aes.BlockSize+len(plaintext))
iv := ciphertext[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
panic(err)
}
mode := cipher.NewCBCEncrypter(block, iv)
mode.CryptBlocks(ciphertext[aes.BlockSize:], plaintext)
// It's important to remember that ciphertexts must be authenticated
// (i.e. by using crypto/hmac) as well as being encrypted in order to
// be secure.
fmt.Printf("%x\n", ciphertext)
func NewCBCDecrypter
func NewCBCDecrypter(b Block, iv []byte) BlockMode
返回一个密码分组链接模式的、底层用b解密的BlockMode接口,初始向量iv必须和加密时使用的iv相同。
Example
key := []byte("example key 1234")
ciphertext, _ := hex.DecodeString("f363f3ccdcb12bb883abf484ba77d9cd7d32b5baecb3d4b1b3e0e4beffdb3ded")
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
if len(ciphertext) < aes.BlockSize {
panic("ciphertext too short")
}
iv := ciphertext[:aes.BlockSize]
ciphertext = ciphertext[aes.BlockSize:]
// CBC mode always works in whole blocks.
if len(ciphertext)%aes.BlockSize != 0 {
panic("ciphertext is not a multiple of the block size")
}
mode := cipher.NewCBCDecrypter(block, iv)
// CryptBlocks can work in-place if the two arguments are the same.
mode.CryptBlocks(ciphertext, ciphertext)
// If the original plaintext lengths are not a multiple of the block
// size, padding would have to be added when encrypting, which would be
// removed at this point. For an example, see
// https://tools.ietf.org/html/rfc5246#section-6.2.3.2\. However, it's
// critical to note that ciphertexts must be authenticated (i.e. by
// using crypto/hmac) before being decrypted in order to avoid creating
// a padding oracle.
fmt.Printf("%s\n", ciphertext)
Output:
exampleplaintext
type Stream
type Stream interface {
// 从加密器的key流和src中依次取出字节二者xor后写入dst,src和dst可指向同一内存地址
XORKeyStream(dst, src []byte)
}
Stream接口代表一个流模式的加/解密器。
func NewCFBEncrypter
func NewCFBEncrypter(block Block, iv []byte) Stream
返回一个密码反馈模式的、底层用block加密的Stream接口,初始向量iv的长度必须等于block的块尺寸。
Example
key := []byte("example key 1234")
plaintext := []byte("some plaintext")
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
ciphertext := make([]byte, aes.BlockSize+len(plaintext))
iv := ciphertext[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
panic(err)
}
stream := cipher.NewCFBEncrypter(block, iv)
stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext)
// It's important to remember that ciphertexts must be authenticated
// (i.e. by using crypto/hmac) as well as being encrypted in order to
// be secure.
func NewCFBDecrypter
func NewCFBDecrypter(block Block, iv []byte) Stream
返回一个密码反馈模式的、底层用block解密的Stream接口,初始向量iv必须和加密时使用的iv相同。
Example
key := []byte("example key 1234")
ciphertext, _ := hex.DecodeString("22277966616d9bc47177bd02603d08c9a67d5380d0fe8cf3b44438dff7b9")
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
if len(ciphertext) < aes.BlockSize {
panic("ciphertext too short")
}
iv := ciphertext[:aes.BlockSize]
ciphertext = ciphertext[aes.BlockSize:]
stream := cipher.NewCFBDecrypter(block, iv)
// XORKeyStream can work in-place if the two arguments are the same.
stream.XORKeyStream(ciphertext, ciphertext)
fmt.Printf("%s", ciphertext)
Output:
some plaintext
func NewOFB
func NewOFB(b Block, iv []byte) Stream
返回一个输出反馈模式的、底层采用b生成key流的Stream接口,初始向量iv的长度必须等于b的块尺寸。
Example
key := []byte("example key 1234")
plaintext := []byte("some plaintext")
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
ciphertext := make([]byte, aes.BlockSize+len(plaintext))
iv := ciphertext[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
panic(err)
}
stream := cipher.NewOFB(block, iv)
stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext)
// It's important to remember that ciphertexts must be authenticated
// (i.e. by using crypto/hmac) as well as being encrypted in order to
// be secure.
// OFB mode is the same for both encryption and decryption, so we can
// also decrypt that ciphertext with NewOFB.
plaintext2 := make([]byte, len(plaintext))
stream = cipher.NewOFB(block, iv)
stream.XORKeyStream(plaintext2, ciphertext[aes.BlockSize:])
fmt.Printf("%s\n", plaintext2)
Output:
some plaintext
func NewCTR
func NewCTR(block Block, iv []byte) Stream
返回一个计数器模式的、底层采用block生成key流的Stream接口,初始向量iv的长度必须等于block的块尺寸。
Example
key := []byte("example key 1234")
plaintext := []byte("some plaintext")
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
ciphertext := make([]byte, aes.BlockSize+len(plaintext))
iv := ciphertext[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
panic(err)
}
stream := cipher.NewCTR(block, iv)
stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext)
// It's important to remember that ciphertexts must be authenticated
// (i.e. by using crypto/hmac) as well as being encrypted in order to
// be secure.
// CTR mode is the same for both encryption and decryption, so we can
// also decrypt that ciphertext with NewCTR.
plaintext2 := make([]byte, len(plaintext))
stream = cipher.NewCTR(block, iv)
stream.XORKeyStream(plaintext2, ciphertext[aes.BlockSize:])
fmt.Printf("%s\n", plaintext2)
Output:
some plaintext
type StreamReader
type StreamReader struct {
S Stream
R io.Reader
}
将一个Stream与一个io.Reader接口关联起来,Read方法会调用XORKeyStream方法来处理获取的所有切片。
Example
key := []byte("example key 1234")
inFile, err := os.Open("encrypted-file")
if err != nil {
panic(err)
}
defer inFile.Close()
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// If the key is unique for each ciphertext, then it's ok to use a zero
// IV.
var iv [aes.BlockSize]byte
stream := cipher.NewOFB(block, iv[:])
outFile, err := os.OpenFile("decrypted-file", os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0600)
if err != nil {
panic(err)
}
defer outFile.Close()
reader := &cipher.StreamReader{S: stream, R: inFile}
// Copy the input file to the output file, decrypting as we go.
if _, err := io.Copy(outFile, reader); err != nil {
panic(err)
}
// Note that this example is simplistic in that it omits any
// authentication of the encrypted data. It you were actually to use
// StreamReader in this manner, an attacker could flip arbitrary bits in
// the output.
func (StreamReader) Read
func (r StreamReader) Read(dst []byte) (n int, err error)
type StreamWriter
type StreamWriter struct {
S Stream
W io.Writer
Err error // unused
}
将一个Stream与一个io.Writer接口关联起来,Write方法会调用XORKeyStream方法来处理提供的所有切片。如果Write方法返回的n小于提供的切片的长度,则表示StreamWriter不同步,必须丢弃。StreamWriter没有内建的缓存,不需要调用Close方法去清空缓存。
Example
key := []byte("example key 1234")
inFile, err := os.Open("plaintext-file")
if err != nil {
panic(err)
}
defer inFile.Close()
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// If the key is unique for each ciphertext, then it's ok to use a zero
// IV.
var iv [aes.BlockSize]byte
stream := cipher.NewOFB(block, iv[:])
outFile, err := os.OpenFile("encrypted-file", os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0600)
if err != nil {
panic(err)
}
defer outFile.Close()
writer := &cipher.StreamWriter{S: stream, W: outFile}
// Copy the input file to the output file, encrypting as we go.
if _, err := io.Copy(writer, inFile); err != nil {
panic(err)
}
// Note that this example is simplistic in that it omits any
// authentication of the encrypted data. It you were actually to use
// StreamReader in this manner, an attacker could flip arbitrary bits in
// the decrypted result.
func (StreamWriter) Write
func (w StreamWriter) Write(src []byte) (n int, err error)
func (StreamWriter) Close
func (w StreamWriter) Close() error
如果w.W字段实现了io.Closer接口,本方法会调用其Close方法并返回该方法的返回值;否则不做操作返回nil。
type AEAD
type AEAD interface {
// 返回提供给Seal和Open方法的随机数nonce的字节长度
NonceSize() int
// 返回原始文本和加密文本的最大长度差异
Overhead() int
// 加密并认证明文,认证附加的data,将结果添加到dst,返回更新后的切片。
// nonce的长度必须是NonceSize()字节,且对给定的key和时间都是独一无二的。
// plaintext和dst可以是同一个切片,也可以不同。
Seal(dst, nonce, plaintext, data []byte) []byte
// 解密密文并认证,认证附加的data,如果认证成功,将明文添加到dst,返回更新后的切片。
// nonce的长度必须是NonceSize()字节,nonce和data都必须和加密时使用的相同。
// ciphertext和dst可以是同一个切片,也可以不同。
Open(dst, nonce, ciphertext, data []byte) ([]byte, error)
}
AEAD接口是一种提供了使用关联数据进行认证加密的功能的加密模式。
func NewGCM
func NewGCM(cipher Block) (AEAD, error)
函数用迦洛瓦计数器模式包装提供的128位Block接口,并返回AEAD接口。