循环层Recurrent
Recurrent层
keras.layers.recurrent.Recurrent(return_sequences=False, go_backwards=False, stateful=False, unroll=False, implementation=0)
这是循环层的抽象类,请不要在模型中直接应用该层(因为它是抽象类,无法实例化任何对象)。请使用它的子类LSTM
,GRU
或SimpleRNN
。
所有的循环层(LSTM
,GRU
,SimpleRNN
)都服从本层的性质,并接受本层指定的所有关键字参数。
参数
weights:numpy array的list,用以初始化权重。该list形如
[(input_dim, output_dim),(output_dim, output_dim),(output_dim,)]
return_sequences:布尔值,默认
False
,控制返回类型。若为True
则返回整个序列,否则仅返回输出序列的最后一个输出go_backwards:布尔值,默认为
False
,若为True
,则逆向处理输入序列并返回逆序后的序列stateful:布尔值,默认为
False
,若为True
,则一个batch中下标为i的样本的最终状态将会用作下一个batch同样下标的样本的初始状态。unroll:布尔值,默认为
False
,若为True
,则循环层将被展开,否则就使用符号化的循环。当使用TensorFlow为后端时,循环网络本来就是展开的,因此该层不做任何事情。层展开会占用更多的内存,但会加速RNN的运算。层展开只适用于短序列。implementation:0,1或2, 若为0,则RNN将以更少但是更大的矩阵乘法实现,因此在CPU上运行更快,但消耗更多的内存。如果设为1,则RNN将以更多但更小的矩阵乘法实现,因此在CPU上运行更慢,在GPU上运行更快,并且消耗更少的内存。如果设为2(仅LSTM和GRU可以设为2),则RNN将把输入门、遗忘门和输出门合并为单个矩阵,以获得更加在GPU上更加高效的实现。注意,RNN dropout必须在所有门上共享,并导致正则效果性能微弱降低。
input_dim:输入维度,当使用该层为模型首层时,应指定该值(或等价的指定input_shape)
input_length:当输入序列的长度固定时,该参数为输入序列的长度。当需要在该层后连接
Flatten
层,然后又要连接Dense
层时,需要指定该参数,否则全连接的输出无法计算出来。注意,如果循环层不是网络的第一层,你需要在网络的第一层中指定序列的长度(通过input_shape
指定)。
输入shape
形如(samples,timesteps,input_dim)的3D张量
输出shape
如果return_sequences=True
:返回形如(samples,timesteps,output_dim)的3D张量
否则,返回形如(samples,output_dim)的2D张量
例子
# as the first layer in a Sequential model
model = Sequential()
model.add(LSTM(32, input_shape=(10, 64)))
# now model.output_shape == (None, 32)
# note: `None` is the batch dimension.
# the following is identical:
model = Sequential()
model.add(LSTM(32, input_dim=64, input_length=10))
# for subsequent layers, no need to specify the input size:
model.add(LSTM(16))
# to stack recurrent layers, you must use return_sequences=True
# on any recurrent layer that feeds into another recurrent layer.
# note that you only need to specify the input size on the first layer.
model = Sequential()
model.add(LSTM(64, input_dim=64, input_length=10, return_sequences=True))
model.add(LSTM(32, return_sequences=True))
model.add(LSTM(10))
指定RNN初始状态的注意事项
可以通过设置initial_state
用符号式的方式指定RNN层的初始状态。即,initial_stat
的值应该为一个tensor或一个tensor列表,代表RNN层的初始状态。
也可以通过设置reset_states
参数用数值的方法设置RNN的初始状态,状态的值应该为numpy数组或numpy数组的列表,代表RNN层的初始状态。
屏蔽输入数据(Masking)
循环层支持通过时间步变量对输入数据进行Masking,如果想将输入数据的一部分屏蔽掉,请使用Embedding层并将参数mask_zero
设为True
。
使用状态RNN的注意事项
可以将RNN设置为‘stateful’,意味着由每个batch计算出的状态都会被重用于初始化下一个batch的初始状态。状态RNN假设连续的两个batch之中,相同下标的元素有一一映射关系。
要启用状态RNN,请在实例化层对象时指定参数stateful=True
,并在Sequential模型使用固定大小的batch:通过在模型的第一层传入batch_size=(...)
和input_shape
来实现。在函数式模型中,对所有的输入都要指定相同的batch_size
。
如果要将循环层的状态重置,请调用.reset_states()
,对模型调用将重置模型中所有状态RNN的状态。对单个层调用则只重置该层的状态。
SimpleRNN层
keras.layers.recurrent.SimpleRNN(units, activation='tanh', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0)
全连接RNN网络,RNN的输出会被回馈到输入
参数
units:输出维度
activation:激活函数,为预定义的激活函数名(参考激活函数)
use_bias: 布尔值,是否使用偏置项
kernel_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers
recurrent_initializer:循环核的初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers
bias_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers
kernel_regularizer:施加在权重上的正则项,为Regularizer对象
bias_regularizer:施加在偏置向量上的正则项,为Regularizer对象
recurrent_regularizer:施加在循环核上的正则项,为Regularizer对象
activity_regularizer:施加在输出上的正则项,为Regularizer对象
kernel_constraints:施加在权重上的约束项,为Constraints对象
recurrent_constraints:施加在循环核上的约束项,为Constraints对象
bias_constraints:施加在偏置上的约束项,为Constraints对象
dropout:0~1之间的浮点数,控制输入线性变换的神经元断开比例
recurrent_dropout:0~1之间的浮点数,控制循环状态的线性变换的神经元断开比例
参考文献
GRU层
keras.layers.recurrent.GRU(units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0)
门限循环单元(详见参考文献)
参数
units:输出维度
activation:激活函数,为预定义的激活函数名(参考激活函数)
use_bias: 布尔值,是否使用偏置项
kernel_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers
recurrent_initializer:循环核的初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers
bias_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers
kernel_regularizer:施加在权重上的正则项,为Regularizer对象
bias_regularizer:施加在偏置向量上的正则项,为Regularizer对象
recurrent_regularizer:施加在循环核上的正则项,为Regularizer对象
activity_regularizer:施加在输出上的正则项,为Regularizer对象
kernel_constraints:施加在权重上的约束项,为Constraints对象
recurrent_constraints:施加在循环核上的约束项,为Constraints对象
bias_constraints:施加在偏置上的约束项,为Constraints对象
dropout:0~1之间的浮点数,控制输入线性变换的神经元断开比例
recurrent_dropout:0~1之间的浮点数,控制循环状态的线性变换的神经元断开比例
参考文献
On the Properties of Neural Machine Translation: Encoder–Decoder Approaches
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
A Theoretically Grounded Application of Dropout in Recurrent Neural Networks
LSTM层
keras.layers.recurrent.LSTM(units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0)
Keras长短期记忆模型,关于此算法的详情,请参考本教程
参数
units:输出维度
activation:激活函数,为预定义的激活函数名(参考激活函数)
recurrent_activation: 为循环步施加的激活函数(参考激活函数)
use_bias: 布尔值,是否使用偏置项
kernel_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers
recurrent_initializer:循环核的初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers
bias_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers
kernel_regularizer:施加在权重上的正则项,为Regularizer对象
bias_regularizer:施加在偏置向量上的正则项,为Regularizer对象
recurrent_regularizer:施加在循环核上的正则项,为Regularizer对象
activity_regularizer:施加在输出上的正则项,为Regularizer对象
kernel_constraints:施加在权重上的约束项,为Constraints对象
recurrent_constraints:施加在循环核上的约束项,为Constraints对象
bias_constraints:施加在偏置上的约束项,为Constraints对象
dropout:0~1之间的浮点数,控制输入线性变换的神经元断开比例
recurrent_dropout:0~1之间的浮点数,控制循环状态的线性变换的神经元断开比例