03.模型的加载
程序说明
时间:2016年11月16日
说明:该程序是一个包含两个隐藏层的神经网络。演示如何加载一个保存好的模型。
数据集:MNIST
1.加载keras模块
from __future__ import print_function
import numpy as np
np.random.seed(1337) # for reproducibility
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD, Adam, RMSprop
from keras.utils import np_utils
Using TensorFlow backend.
需要加载load_model
from keras.models import load_model
2.变量初始化
batch_size = 128
nb_classes = 10
nb_epoch = 20
3.准备数据
# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
60000 train samples
10000 test samples
转换类标号
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
4.建立模型
在现有的文件中加载模型
model = load_model('mnist-mpl.h5')
打印模型
model.summary()
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
dense_1 (Dense) (None, 512) 401920 dense_input_1[0][0]
____________________________________________________________________________________________________
activation_1 (Activation) (None, 512) 0 dense_1[0][0]
____________________________________________________________________________________________________
dropout_1 (Dropout) (None, 512) 0 activation_1[0][0]
____________________________________________________________________________________________________
dense_2 (Dense) (None, 512) 262656 dropout_1[0][0]
____________________________________________________________________________________________________
activation_2 (Activation) (None, 512) 0 dense_2[0][0]
____________________________________________________________________________________________________
dropout_2 (Dropout) (None, 512) 0 activation_2[0][0]
____________________________________________________________________________________________________
dense_3 (Dense) (None, 10) 5130 dropout_2[0][0]
____________________________________________________________________________________________________
activation_3 (Activation) (None, 10) 0 dense_3[0][0]
====================================================================================================
Total params: 669706
____________________________________________________________________________________________________
5.训练与评估
编译模型
model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(),
metrics=['accuracy'])
模型评估
score = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
Test score: 0.113199677604
Test accuracy: 0.9831