第09章 合并Pandas对象
In[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
1. DataFrame添加新的行
# 读取names数据集
In[2]: names = pd.read_csv('data/names.csv')
names
Out[2]:
# 用loc直接赋值新的行
In[3]: new_data_list = ['Aria', 1]
names.loc[4] = new_data_list
names
Out[3]:
# 用loc的标签直接赋值新的行
In[4]: names.loc['five'] = ['Zach', 3]
names
Out[4]:
# 也可以用字典赋值新行
In[5]: names.loc[len(names)] = {'Name':'Zayd', 'Age':2}
names
Out[5]:
In[6]: names
Out[6]:
# 字典可以打乱列名的顺序
In[7]: names.loc[len(names)] = pd.Series({'Age':32, 'Name':'Dean'})
names
Out[7]:
# 直接append一个字典
In[8]: names = pd.read_csv('data/names.csv')
names.append({'Name':'Aria', 'Age':1})
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-8-562aecc73587> in <module>()
1 # Use append with fresh copy of names
2 names = pd.read_csv('data/names.csv')
----> 3 names.append({'Name':'Aria', 'Age':1})
/Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/frame.py in append(self, other, ignore_index, verify_integrity)
4515 other = Series(other)
4516 if other.name is None and not ignore_index:
-> 4517 raise TypeError('Can only append a Series if ignore_index=True'
4518 ' or if the Series has a name')
4519
TypeError: Can only append a Series if ignore_index=True or if the Series has a name
# 按照错误提示,加上ignore_index=True
In[9]: names.append({'Name':'Aria', 'Age':1}, ignore_index=True)
Out[9]:
# 设定行索引
In[10]: names.index = ['Canada', 'Canada', 'USA', 'USA']
names
Out[10]:
# 添加一行
In[11]: names.append({'Name':'Aria', 'Age':1}, ignore_index=True)
Out[11]:
# 创建一个Series对象
In[12]: s = pd.Series({'Name': 'Zach', 'Age': 3}, name=len(names))
s
Out[12]: Age 3
Name Zach
Name: 4, dtype: object
# append方法可以将DataFrame和Series相连
In[13]: names.append(s)
Out[13]:
# append方法可以同时连接多行,只要将对象放到列表中
In[14]: s1 = pd.Series({'Name': 'Zach', 'Age': 3}, name=len(names))
s2 = pd.Series({'Name': 'Zayd', 'Age': 2}, name='USA')
names.append([s1, s2])
Out[14]:
# 读取baseball16数据集
In[15]: bball_16 = pd.read_csv('data/baseball16.csv')
bball_16.head()
Out[15]:
# 选取一行,并将其转换为字典
In[16]: data_dict = bball_16.iloc[0].to_dict()
print(data_dict)
{'playerID': 'altuvjo01', 'yearID': 2016, 'stint': 1, 'teamID': 'HOU', 'lgID': 'AL', 'G': 161, 'AB': 640, 'R': 108, 'H': 216, '2B': 42, '3B': 5, 'HR': 24, 'RBI': 96.0, 'SB': 30.0, 'CS': 10.0, 'BB': 60, 'SO': 70.0, 'IBB': 11.0, 'HBP': 7.0, 'SH': 3.0, 'SF': 7.0, 'GIDP': 15.0}
# 对这个字典做格式处理,如果是字符串则为空,否则为缺失值
In[17]: new_data_dict = {k: '' if isinstance(v, str) else np.nan for k, v in data_dict.items()}
print(new_data_dict)
{'playerID': '', 'yearID': nan, 'stint': nan, 'teamID': '', 'lgID': '', 'G': nan, 'AB': nan, 'R': nan, 'H': nan, '2B': nan, '3B': nan, 'HR': nan, 'RBI': nan, 'SB': nan, 'CS': nan, 'BB': nan, 'SO': nan, 'IBB': nan, 'HBP': nan, 'SH': nan, 'SF': nan, 'GIDP': nan}
更多
# 将一行数据添加到DataFrame是非常消耗资源的,不能通过循环的方法来做。下面是创建一千行的新数据,用作Series的列表:
In[18]: random_data = []
for i in range(1000):
d = dict()
for k, v in data_dict.items():
if isinstance(v, str):
d[k] = np.random.choice(list('abcde'))
else:
d[k] = np.random.randint(10)
random_data.append(pd.Series(d, name=i + len(bball_16)))
random_data[0].head()
Out[18]: 2B 2
3B 6
AB 8
BB 2
CS 0
Name: 16, dtype: object
# 给上面的append操作计时,1000行的数据用了5秒钟
In[19]: %%timeit
bball_16_copy = bball_16.copy()
for row in random_data:
bball_16_copy = bball_16_copy.append(row)
5.36 s ± 298 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
# 如果是通过列表的方式append,可以大大节省时间
In[20]: %%timeit
bball_16_copy = bball_16.copy()
bball_16_copy = bball_16_copy.append(random_data)
86.2 ms ± 3.71 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
2. 连接多个DataFrame
# 读取stocks_2016和stocks_2017两个数据集,用Symbol作为行索引名
In[21]: stocks_2016 = pd.read_csv('data/stocks_2016.csv', index_col='Symbol')
stocks_2017 = pd.read_csv('data/stocks_2017.csv', index_col='Symbol')
In[22]: stocks_2016
Out[22]:
In[23]: stocks_2017
Out[23]:
# 将两个DataFrame放到一个列表中,用pandas的concat方法将它们连接起来
In[24]: s_list = [stocks_2016, stocks_2017]
pd.concat(s_list)
Out[24]:
# keys参数可以给两个DataFrame命名,该标签会出现在行索引的最外层,会生成多层索引,names参数可以重命名每个索引层
In[25]: pd.concat(s_list, keys=['2016', '2017'], names=['Year', 'Symbol'])
Out[25]:
# 也可以横向连接。只要将axis参数设为columns或1
In[26]: pd.concat(s_list, keys=['2016', '2017'], axis='columns', names=['Year', None])
Out[26]:
# concat函数默认使用的是外连接,会保留每个DataFrame中的所有行。也可以通过设定join参数,使用内连接:
In[27]: pd.concat(s_list, join='inner', keys=['2016', '2017'], axis='columns', names=['Year', None])
Out[27]:
更多
# append是concat方法的超简化版本,append内部其实就是调用concat。前本节的第二个例子,pd.concat也可以如下实现:
In[28]: stocks_2016.append(stocks_2017)
Out[28]:
# 原书没有下面三行代码
In[29]: stocks_2015 = stocks_2016.copy()
In[30]: stocks_2017
Out[30]:
3. 比较特朗普和奥巴马的支持率
# pandas的read_html函数可以从网页抓取表格数据
In[31]: base_url = 'http://www.presidency.ucsb.edu/data/popularity.php?pres={}'
trump_url = base_url.format(45)
df_list = pd.read_html(trump_url)
len(df_list)
Out[31]: 14
# 一共返回了14个表的DataFrame,取第一个
In[32]: df0 = df_list[0]
df0.shape
Out[32]: (324, 1906)
In[33]: df0.head(7)
Out[33]:
# 用match参数匹配table中的字符串
In[34]: df_list = pd.read_html(trump_url, match='Start Date')
len(df_list)
Out[34]: 3
# 通过检查页面元素的属性,用attrs参数进行匹配
In[35]: df_list = pd.read_html(trump_url, match='Start Date', attrs={'align':'center'})
len(df_list)
Out[35]: 1
# 查看DataFrame的形状
In[36]: trump = df_list[0]
trump.shape
Out[36]: (265, 19)
In[37]: trump.head(8)
Out[37]:
# skiprows可以指定跳过一些行,header参数可以指定列名,用parse_dates指定开始和结束日期
In[38]: df_list = pd.read_html(trump_url, match='Start Date', attrs={'align':'center'},
header=0, skiprows=[0,1,2,3,5], parse_dates=['Start Date', 'End Date'])
trump = df_list[0]
trump.head()
Out[38]:
# 删除所有值都是缺失值的列
In[39]: trump = trump.dropna(axis=1, how='all')
trump.head()
Out[39]:
# 统计各列的缺失值个数
In[40]: trump.isnull().sum()
Out[40]: President 258
Start Date 0
End Date 0
Approving 0
Disapproving 0
unsure/no data 0
dtype: int64
# 缺失值向前填充
In[41]: trump = trump.ffill()
trump.head()
Out[41]:
# 确认数据类型
In[42]: trump.dtypes
Out[42]: President object
Start Date datetime64[ns]
End Date datetime64[ns]
Approving int64
Disapproving int64
unsure/no data int64
dtype: object
# 将前面的步骤做成一个函数,用于获取任意总统的信息
In[43]: def get_pres_appr(pres_num):
base_url = 'http://www.presidency.ucsb.edu/data/popularity.php?pres={}'
pres_url = base_url.format(pres_num)
df_list = pd.read_html(pres_url, match='Start Date', attrs={'align':'center'},
header=0, skiprows=[0,1,2,3,5], parse_dates=['Start Date', 'End Date'])
pres = df_list[0].copy()
pres = pres.dropna(axis=1, how='all')
pres['President'] = pres['President'].ffill()
return pres.sort_values('End Date').reset_index(drop=True)
# 括号中的数字是总统的编号,奥巴马是44
In[44]: obama = get_pres_appr(44)
obama.head()
Out[44]:
# 获取最近五位总统的数据,输出每位的前三行数据
In[45]: pres_41_45 = pd.concat([get_pres_appr(x) for x in range(41,46)], ignore_index=True)
pres_41_45.groupby('President').head(3)
Out[45]:
# 确认一下是否有一个日期对应多个支持率
In[46]: pres_41_45['End Date'].value_counts().head(8)
Out[46]: 1990-03-11 2
1990-08-12 2
1990-08-26 2
2013-10-10 2
1999-02-09 2
1992-11-22 2
1990-05-22 2
2005-01-05 1
Name: End Date, dtype: int64
# 去除重复值
In[47]: pres_41_45 = pres_41_45.drop_duplicates(subset='End Date')
In[48]: pres_41_45.shape
Out[48]: (3695, 6)
# 对数据做简单的统计
In[49]: pres_41_45['President'].value_counts()
Out[49]: Barack Obama 2786
George W. Bush 270
Donald J. Trump 259
William J. Clinton 227
George Bush 153
Name: President, dtype: int64
In[50]: pres_41_45.groupby('President', sort=False).median().round(1)
Out[50]:
# 画出每任总统的支持率变化
In[51]: from matplotlib import cm
fig, ax = plt.subplots(figsize=(16,6))
styles = ['-.', '-', ':', '-', ':']
colors = [.9, .3, .7, .3, .9]
groups = pres_41_45.groupby('President', sort=False)
for style, color, (pres, df) in zip(styles, colors, groups):
df.plot('End Date', 'Approving', ax=ax, label=pres, style=style, color=cm.Greys(color),
title='Presedential Approval Rating')
# 上面的图是将数据前后串起来,也可以用支持率对在职天数作图
In[52]: days_func = lambda x: x - x.iloc[0]
pres_41_45['Days in Office'] = pres_41_45.groupby('President') \
['End Date'] \
.transform(days_func)
In[82]: pres_41_45['Days in Office'] = pres_41_45.groupby('President')['End Date'].transform(lambda x: x - x.iloc[0])
pres_41_45.groupby('President').head(3)
Out[82]:
# 查看数据类型
In[83]: pres_41_45.dtypes
Out[83]: President object
Start Date datetime64[ns]
End Date datetime64[ns]
Approving int64
Disapproving int64
unsure/no data int64
Days in Office timedelta64[ns]
dtype: object
# Days in Office的数据类型是timedelta64[ns],单位是纳秒,将其转换为整数
In[86]: pres_41_45['Days in Office'] = pres_41_45['Days in Office'].dt.days
pres_41_45['Days in Office'].head()
Out[86]: 0 0
1 32
2 35
3 43
4 46
Name: Days in Office, dtype: int64
# 转换数据,使每位总统的支持率各成一列
In[87]: pres_pivot = pres_41_45.pivot(index='Days in Office', columns='President', values='Approving')
pres_pivot.head()
Out[87]:
# 只画出特朗普和奥巴马的支持率
In[88]: plot_kwargs = dict(figsize=(16,6), color=cm.gray([.3, .7]), style=['-', '--'], title='Approval Rating')
pres_pivot.loc[:250, ['Donald J. Trump', 'Barack Obama']].ffill().plot(**plot_kwargs)
Out[88]: <matplotlib.axes._subplots.AxesSubplot at 0x1152254a8>
更多
# rolling average方法可以平滑曲线,在这个例子中,使用的是90天求平均,参数on指明了滚动窗口是从哪列计算的
In[89]: pres_rm = pres_41_45.groupby('President', sort=False) \
.rolling('90D', on='End Date')['Approving'] \
.mean()
pres_rm.head()
Out[89]: President End Date
George Bush 1989-01-26 51.000000
1989-02-27 55.500000
1989-03-02 57.666667
1989-03-10 58.750000
1989-03-13 58.200000
Name: Approving, dtype: float64
# 对数据的行和列做调整,然后作图
In[90]: styles = ['-.', '-', ':', '-', ':']
colors = [.9, .3, .7, .3, .9]
color = cm.Greys(colors)
title='90 Day Approval Rating Rolling Average'
plot_kwargs = dict(figsize=(16,6), style=styles, color = color, title=title)
correct_col_order = pres_41_45.President.unique()
pres_rm.unstack('President')[correct_col_order].plot(**plot_kwargs)
Out[90]: <matplotlib.axes._subplots.AxesSubplot at 0x1162d0780>
4. concat, join, 和merge的区别
concat
:
- Pandas函数
- 可以垂直和水平地连接两个或多个pandas对象
- 只用索引对齐
- 索引出现重复值时会报错
- 默认是外连接(也可以设为内连接)
join
:
- DataFrame方法
- 只能水平连接两个或多个pandas对象
- 对齐是靠被调用的DataFrame的列索引或行索引和另一个对象的行索引(不能是列索引)
- 通过笛卡尔积处理重复的索引值
- 默认是左连接(也可以设为内连接、外连接和右连接)
merge
:
- DataFrame方法
- 只能水平连接两个DataFrame对象
- 对齐是靠被调用的DataFrame的列或行索引和另一个DataFrame的列或行索引
- 通过笛卡尔积处理重复的索引值
- 默认是内连接(也可以设为左连接、外连接、右连接)
# 用户自定义的display_frames函数,可以接收一列DataFrame,然后在一行中显示:
In[91]: from IPython.display import display_html
years = 2016, 2017, 2018
stock_tables = [pd.read_csv('data/stocks_{}.csv'.format(year), index_col='Symbol')
for year in years]
def display_frames(frames, num_spaces=0):
t_style = '<table style="display: inline;"'
tables_html = [df.to_html().replace('<table', t_style) for df in frames]
space = ' ' * num_spaces
display_html(space.join(tables_html), raw=True)
display_frames(stock_tables, 30)
stocks_2016, stocks_2017, stocks_2018 = stock_tables
# concat是唯一一个可以将DataFrames垂直连接起来的函数
In[92]: pd.concat(stock_tables, keys=[2016, 2017, 2018])
Out[92]:
# concat也可以将DataFrame水平连起来
In[93]: pd.concat(dict(zip(years,stock_tables)), axis='columns')
Out[93]:
# 用join将DataFrame连起来;如果列名有相同的,需要设置lsuffix或rsuffix以进行区分
In[94]: stocks_2016.join(stocks_2017, lsuffix='_2016', rsuffix='_2017', how='outer')
Out[94]:
In[95]: stocks_2016
Out[95]:
# 要重现前面的concat方法,可以将一个DataFrame列表传入join
In[96]: other = [stocks_2017.add_suffix('_2017'), stocks_2018.add_suffix('_2018')]
stocks_2016.add_suffix('_2016').join(other, how='outer')
Out[96]:
# 检验这两个方法是否相同
In[97]: stock_join = stocks_2016.add_suffix('_2016').join(other, how='outer')
stock_concat = pd.concat(dict(zip(years,stock_tables)), axis='columns')
In[98]: stock_concat.columns = stock_concat.columns.get_level_values(1) + '_' + \
stock_concat.columns.get_level_values(0).astype(str)
In[99]: stock_concat
Out[99]:
In[100]: step1 = stocks_2016.merge(stocks_2017, left_index=True, right_index=True,
how='outer', suffixes=('_2016', '_2017'))
stock_merge = step1.merge(stocks_2018.add_suffix('_2018'),
left_index=True, right_index=True, how='outer')
stock_concat.equals(stock_merge)
Out[100]: True
# 查看food_prices和food_transactions两个小数据集
In[101]: names = ['prices', 'transactions']
food_tables = [pd.read_csv('data/food_{}.csv'.format(name)) for name in names]
food_prices, food_transactions = food_tables
display_frames(food_tables, 30)
# 通过键item和store,将food_transactions和food_prices两个数据集融合
In[102]: food_transactions.merge(food_prices, on=['item', 'store'])
Out[102]:
# 因为steak在两张表中分别出现了两次,融合时产生了笛卡尔积,造成结果中出现了四行steak;因为coconut没有对应的价格,造成结果中没有coconut
# 下面只融合2017年的数据
In[103]: food_transactions.merge(food_prices.query('Date == 2017'), how='left')
Out[103]:
# 使用join复现上面的方法,需要需要将要连接的food_prices列转换为行索引
In[104]: food_prices_join = food_prices.query('Date == 2017').set_index(['item', 'store'])
food_prices_join
Out[104]:
# join方法只对齐传入DataFrame的行索引,但可以对齐调用DataFrame的行索引和列索引;
# 要使用列做对齐,需要将其传给参数on
In[105]: food_transactions.join(food_prices_join, on=['item', 'store'])
Out[105]:
# 要使用concat,需要将item和store两列放入两个DataFrame的行索引。但是,因为行索引值有重复,造成了错误
In[106]: pd.concat([food_transactions.set_index(['item', 'store']),
food_prices.set_index(['item', 'store'])], axis='columns')
---------------------------------------------------------------------------
Exception Traceback (most recent call last)
<ipython-input-106-8aa3223bf3d1> in <module>()
1 pd.concat([food_transactions.set_index(['item', 'store']),
----> 2 food_prices.set_index(['item', 'store'])], axis='columns')
/Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/reshape/concat.py in concat(objs, axis, join, join_axes, ignore_index, keys, levels, names, verify_integrity, copy)
205 verify_integrity=verify_integrity,
206 copy=copy)
--> 207 return op.get_result()
208
209
/Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/reshape/concat.py in get_result(self)
399 obj_labels = mgr.axes[ax]
400 if not new_labels.equals(obj_labels):
--> 401 indexers[ax] = obj_labels.reindex(new_labels)[1]
402
403 mgrs_indexers.append((obj._data, indexers))
/Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/indexes/multi.py in reindex(self, target, method, level, limit, tolerance)
1861 tolerance=tolerance)
1862 else:
-> 1863 raise Exception("cannot handle a non-unique multi-index!")
1864
1865 if not isinstance(target, MultiIndex):
Exception: cannot handle a non-unique multi-index!
# glob模块的glob函数可以将文件夹中的文件迭代取出,取出的是文件名字符串列表,可以直接传给read_csv函数
In[107]: import glob
df_list = []
for filename in glob.glob('data/gas prices/*.csv'):
df_list.append(pd.read_csv(filename, index_col='Week', parse_dates=['Week']))
gas = pd.concat(df_list, axis='columns')
gas.head()
Out[107]:
5. 连接SQL数据库
# 在读取chinook数据库之前,需要创建SQLAlchemy引擎
In[108]: from sqlalchemy import create_engine
engine = create_engine('sqlite:///data/chinook.db')
In[109]: tracks = pd.read_sql_table('tracks', engine)
tracks.head()
Out[109]:
# read_sql_table函数可以读取一张表,第一个参数是表名,第二个参数是引擎
In[110]: genres = pd.read_sql_table('genres', engine)
genres.head()
Out[110]:
# 找到每种类型歌曲的平均时长
In[111]: genre_track = genres.merge(tracks[['GenreId', 'Milliseconds']],
on='GenreId', how='left') \
.drop('GenreId', axis='columns')
genre_track.head()
Out[111]:
# 将Milliseconds列转变为timedelta数据类型
In[112]: genre_time = genre_track.groupby('Name')['Milliseconds'].mean()
pd.to_timedelta(genre_time, unit='ms').dt.floor('s').sort_values()
Out[112]:
Name
Rock And Roll 00:02:14
Opera 00:02:54
Hip Hop/Rap 00:02:58
Easy Listening 00:03:09
Bossa Nova 00:03:39
R&B/Soul 00:03:40
World 00:03:44
Pop 00:03:49
Latin 00:03:52
Alternative & Punk 00:03:54
Soundtrack 00:04:04
Reggae 00:04:07
Alternative 00:04:24
Blues 00:04:30
Rock 00:04:43
Jazz 00:04:51
Classical 00:04:53
Heavy Metal 00:04:57
Electronica/Dance 00:05:02
Metal 00:05:09
Comedy 00:26:25
TV Shows 00:35:45
Drama 00:42:55
Science Fiction 00:43:45
Sci Fi & Fantasy 00:48:31
Name: Milliseconds, dtype: timedelta64[ns]
# 找到每名顾客花费的总时长
In[113]: cust = pd.read_sql_table('customers', engine,
columns=['CustomerId', 'FirstName', 'LastName'])
invoice = pd.read_sql_table('invoices', engine,
columns=['InvoiceId','CustomerId'])
ii = pd.read_sql_table('invoice_items', engine,
columns=['InvoiceId', 'UnitPrice', 'Quantity'])
In[114]: cust_inv = cust.merge(invoice, on='CustomerId') \
.merge(ii, on='InvoiceId')
cust_inv.head()
Out[114]:
# 现在可以用总量乘以单位价格,找到每名顾客的总消费
In[115]: total = cust_inv['Quantity'] * cust_inv['UnitPrice']
cols = ['CustomerId', 'FirstName', 'LastName']
cust_inv.assign(Total = total).groupby(cols)['Total'] \
.sum() \
.sort_values(ascending=False).head()
Out[115]:
更多
# sql语句查询方法read_sql_query
In[116]: pd.read_sql_query('select * from tracks limit 5', engine)
Out[116]:
# 可以将长字符串传给read_sql_query
In[117]: sql_string1 = '''
select
Name,
time(avg(Milliseconds) / 1000, 'unixepoch') as avg_time
from (
select
g.Name,
t.Milliseconds
from
genres as g
join
tracks as t
on
g.genreid == t.genreid
)
group by
Name
order by
avg_time
'''
pd.read_sql_query(sql_string1, engine)
Out[117]:
In[118]: sql_string2 = '''
select
c.customerid,
c.FirstName,
c.LastName,
sum(ii.quantity * ii.unitprice) as Total
from
customers as c
join
invoices as i
on c.customerid = i.customerid
join
invoice_items as ii
on i.invoiceid = ii.invoiceid
group by
c.customerid, c.FirstName, c.LastName
order by
Total desc
'''
pd.read_sql_query(sql_string2, engine)
Out[118]: