学习Pandas,第 6 课

英文原文: 06 - Lesson

我们看一下 groupby 这个函数。

# 导入库
import pandas as pd
import sys
print('Python version ' + sys.version)
print('Pandas version ' + pd.__version__)
Python version 3.6.1 | packaged by conda-forge | (default, Mar 23 2017, 21:57:00) 
[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)]
Pandas version 0.19.2
# 我们的小数聚集
d = {'one':[1,1,1,1,1],
     'two':[2,2,2,2,2],
     'letter':['a','a','b','b','c']}

# 创建一个 dataframe
df = pd.DataFrame(d)
df
letter one two
0 a 1 2
1 a 1 2
2 b 1 2
3 b 1 2
4 c 1 2
# 创建一个 groupby 对象
one = df.groupby('letter')

# 在分组上应用 sum() 函数
one.sum()
one two
letter
a 2 4
b 2 4
c 1 2
letterone = df.groupby(['letter','one']).sum()
letterone
two
letter one
a 1 4
b 1 4
c 1 2
letterone.index
MultiIndex(levels=[['a', 'b', 'c'], [1]],
           labels=[[0, 1, 2], [0, 0, 0]],
           names=['letter', 'one'])

你可能不想把用来分组的列名字作为索引,像下面的做法很容易实现。

letterone = df.groupby(['letter','one'], as_index=False).sum()
letterone
letter one two
0 a 1 4
1 b 1 4
2 c 1 2
letterone.index
Int64Index([0, 1, 2], dtype='int64')

This tutorial was created by HEDARO

本教程由派兰数据翻译

These tutorials are also available through an email course, please visit http://www.hedaro.com/pandas-tutorial to sign up today.



results matching ""

    No results matching ""