数据库


资料来源:扩展你的用户数到第一个一千万

关系型数据库管理系统(RDBMS)

像 SQL 这样的关系型数据库是一系列以表的形式组织的数据项集合。

校对注:这里作者 SQL 可能指的是 MySQL

ACID 用来描述关系型数据库事务的特性。

  • 原子性 - 每个事务内部所有操作要么全部完成,要么全部不完成。
  • 一致性 - 任何事务都使数据库从一个有效的状态转换到另一个有效状态。
  • 隔离性 - 并发执行事务的结果与顺序执行事务的结果相同。
  • 持久性 - 事务提交后,对系统的影响是永久的。

关系型数据库扩展包括许多技术:主从复制主主复制联合分片非规范化SQL调优


资料来源:可扩展性、可用性、稳定性、模式

主从复制

主库同时负责读取和写入操作,并复制写入到一个或多个从库中,从库只负责读操作。树状形式的从库再将写入复制到更多的从库中去。如果主库离线,系统可以以只读模式运行,直到某个从库被提升为主库或有新的主库出现。

不利之处:主从复制
  • 将从库提升为主库需要额外的逻辑。
  • 参考不利之处:复制中,主从复制和主主复制共同的问题。


资料来源:可扩展性、可用性、稳定性、模式

主主复制

两个主库都负责读操作和写操作,写入操作时互相协调。如果其中一个主库挂机,系统可以继续读取和写入。

不利之处: 主主复制
  • 你需要添加负载均衡器或者在应用逻辑中做改动,来确定写入哪一个数据库。
  • 多数主-主系统要么不能保证一致性(违反 ACID),要么因为同步产生了写入延迟。
  • 随着更多写入节点的加入和延迟的提高,如何解决冲突显得越发重要。
  • 参考不利之处:复制中,主从复制和主主复制共同的问题。
不利之处:复制
  • 如果主库在将新写入的数据复制到其他节点前挂掉,则有数据丢失的可能。
  • 写入会被重放到负责读取操作的副本。副本可能因为过多写操作阻塞住,导致读取功能异常。
  • 读取从库越多,需要复制的写入数据就越多,导致更严重的复制延迟。
  • 在某些数据库系统中,写入主库的操作可以用多个线程并行写入,但读取副本只支持单线程顺序地写入。
  • 复制意味着更多的硬件和额外的复杂度。
来源及延伸阅读

联合


资料来源:扩展你的用户数到第一个一千万

联合(或按功能划分)将数据库按对应功能分割。例如,你可以有三个数据库:论坛用户产品,而不仅是一个单体数据库,从而减少每个数据库的读取和写入流量,减少复制延迟。较小的数据库意味着更多适合放入内存的数据,进而意味着更高的缓存命中几率。没有只能串行写入的中心化主库,你可以并行写入,提高负载能力。

不利之处:联合
  • 如果你的数据库模式需要大量的功能和数据表,联合的效率并不好。
  • 你需要更新应用程序的逻辑来确定要读取和写入哪个数据库。
  • server link 从两个库联结数据更复杂。
  • 联合需要更多的硬件和额外的复杂度。
来源及延伸阅读:联合

分片


资料来源:可扩展性、可用性、稳定性、模式

分片将数据分配在不同的数据库上,使得每个数据库仅管理整个数据集的一个子集。以用户数据库为例,随着用户数量的增加,越来越多的分片会被添加到集群中。

类似联合的优点,分片可以减少读取和写入流量,减少复制并提高缓存命中率。也减少了索引,通常意味着查询更快,性能更好。如果一个分片出问题,其他的仍能运行,你可以使用某种形式的冗余来防止数据丢失。类似联合,没有只能串行写入的中心化主库,你可以并行写入,提高负载能力。

常见的做法是用户姓氏的首字母或者用户的地理位置来分隔用户表。

不利之处:分片
  • 你需要修改应用程序的逻辑来实现分片,这会带来复杂的 SQL 查询。
  • 分片不合理可能导致数据负载不均衡。例如,被频繁访问的用户数据会导致其所在分片的负载相对其他分片高。
    • 再平衡会引入额外的复杂度。基于一致性哈希的分片算法可以减少这种情况。
  • 联结多个分片的数据操作更复杂。
  • 分片需要更多的硬件和额外的复杂度。

来源及延伸阅读:分片

非规范化

非规范化试图以写入性能为代价来换取读取性能。在多个表中冗余数据副本,以避免高成本的联结操作。一些关系型数据库,比如 PostgreSQl 和 Oracle 支持物化视图,可以处理冗余信息存储和保证冗余副本一致。

当数据使用诸如联合分片等技术被分割,进一步提高了处理跨数据中心的联结操作复杂度。非规范化可以规避这种复杂的联结操作。

在多数系统中,读取操作的频率远高于写入操作,比例可达到 100:1,甚至 1000:1。需要复杂的数据库联结的读取操作成本非常高,在磁盘操作上消耗了大量时间。

不利之处:非规范化
  • 数据会冗余。
  • 约束可以帮助冗余的信息副本保持同步,但这样会增加数据库设计的复杂度。
  • 非规范化的数据库在高写入负载下性能可能比规范化的数据库差。
来源及延伸阅读:非规范化

SQL 调优

SQL 调优是一个范围很广的话题,有很多相关的可以作为参考。

利用基准测试性能分析来模拟和发现系统瓶颈很重要。

  • 基准测试 - 用 ab 等工具模拟高负载情况。
  • 性能分析 - 通过启用如慢查询日志等工具来辅助追踪性能问题。

基准测试和性能分析可能会指引你到以下优化方案。

改进模式
  • 为了实现快速访问,MySQL 在磁盘上用连续的块存储数据。
  • 使用 CHAR 类型存储固定长度的字段,不要用 VARCHAR
    • CHAR 在快速、随机访问时效率很高。如果使用 VARCHAR,如果你想读取下一个字符串,不得不先读取到当前字符串的末尾。
  • 使用 TEXT 类型存储大块的文本,例如博客正文。TEXT 还允许布尔搜索。使用 TEXT 字段需要在磁盘上存储一个用于定位文本块的指针。
  • 使用 INT 类型存储高达 2^32 或 40 亿的较大数字。
  • 使用 DECIMAL 类型存储货币可以避免浮点数表示错误。
  • 避免使用 BLOBS 存储对象,存储存放对象的位置。
  • VARCHAR(255) 是以 8 位数字存储的最大字符数,在某些关系型数据库中,最大限度地利用字节。
  • 在适用场景中设置 NOT NULL 约束来提高搜索性能
使用正确的索引
  • 你正查询(SELECTGROUP BYORDER BYJOIN)的列如果用了索引会更快。
  • 索引通常表示为自平衡的 B 树,可以保持数据有序,并允许在对数时间内进行搜索,顺序访问,插入,删除操作。
  • 设置索引,会将数据存在内存中,占用了更多内存空间。
  • 写入操作会变慢,因为索引需要被更新。
  • 加载大量数据时,禁用索引再加载数据,然后重建索引,这样也许会更快。
避免高成本的联结操作
  • 有性能需要,可以进行非规范化。
分割数据表
  • 将热点数据拆分到单独的数据表中,可以有助于缓存。
调优查询缓存
来源及延伸阅读

NoSQL

NoSQL 是键-值数据库文档型数据库列型数据库图数据库的统称。数据库是非规范化的,表联结大多在应用程序代码中完成。大多数 NoSQL 无法实现真正符合 ACID 的事务,支持最终一致

BASE 通常被用于描述 NoSQL 数据库的特性。相比 CAP 理论,BASE 强调可用性超过一致性。

  • 基本可用 - 系统保证可用性。
  • 软状态 - 即使没有输入,系统状态也可能随着时间变化。
  • 最终一致性 - 经过一段时间之后,系统最终会变一致,因为系统在此期间没有收到任何输入。

除了在 SQL 还是 NoSQL 之间做选择,了解哪种类型的 NoSQL 数据库最适合你的用例也是非常有帮助的。我们将在下一节中快速了解下 键-值存储文档型存储列型存储图存储数据库。

键-值存储

抽象模型:哈希表

键-值存储通常可以实现 O(1) 时间读写,用内存或 SSD 存储数据。数据存储可以按字典顺序维护键,从而实现键的高效检索。键-值存储可以用于存储元数据。

键-值存储性能很高,通常用于存储简单数据模型或频繁修改的数据,如存放在内存中的缓存。键-值存储提供的操作有限,如果需要更多操作,复杂度将转嫁到应用程序层面。

键-值存储是如文档存储,在某些情况下,甚至是图存储等更复杂的存储系统的基础。

来源及延伸阅读

文档类型存储

抽象模型:将文档作为值的键-值存储

文档类型存储以文档(XML、JSON、二进制文件等)为中心,文档存储了指定对象的全部信息。文档存储根据文档自身的内部结构提供 API 或查询语句来实现查询。请注意,许多键-值存储数据库有用值存储元数据的特性,这也模糊了这两种存储类型的界限。

基于底层实现,文档可以根据集合、标签、元数据或者文件夹组织。尽管不同文档可以被组织在一起或者分成一组,但相互之间可能具有完全不同的字段。

MongoDB 和 CouchDB 等一些文档类型存储还提供了类似 SQL 语言的查询语句来实现复杂查询。DynamoDB 同时支持键-值存储和文档类型存储。

文档类型存储具备高度的灵活性,常用于处理偶尔变化的数据。

来源及延伸阅读:文档类型存储

列型存储


资料来源: SQL 和 NoSQL,一个简短的历史

抽象模型:嵌套的 ColumnFamily<RowKey, Columns<ColKey, Value, Timestamp>> 映射

类型存储的基本数据单元是列(名/值对)。列可以在列族(类似于 SQL 的数据表)中被分组。超级列族再分组普通列族。你可以使用行键独立访问每一列,具有相同行键值的列组成一行。每个值都包含版本的时间戳用于解决版本冲突。

Google 发布了第一个列型存储数据库 Bigtable,它影响了 Hadoop 生态系统中活跃的开源数据库 HBase 和 Facebook 的 Cassandra。像 BigTable,HBase 和 Cassandra 这样的存储系统将键以字母顺序存储,可以高效地读取键列。

列型存储具备高可用性和高可扩展性。通常被用于大数据相关存储。

来源及延伸阅读:列型存储

图数据库


资料来源:图数据库

抽象模型: 图

在图数据库中,一个节点对应一条记录,一个弧对应两个节点之间的关系。图数据库被优化用于表示外键繁多的复杂关系或多对多关系。

图数据库为存储复杂关系的数据模型,如社交网络,提供了很高的性能。它们相对较新,尚未广泛应用,查找开发工具或者资源相对较难。许多图只能通过 REST API 访问。

相关资源和延伸阅读:图

来源及延伸阅读:NoSQL

SQL 还是 NoSQL


资料来源:从 RDBMS 转换到 NoSQL

选取 SQL 的原因:

  • 结构化数据
  • 严格的模式
  • 关系型数据
  • 需要复杂的联结操作
  • 事务
  • 清晰的扩展模式
  • 既有资源更丰富:开发者、社区、代码库、工具等
  • 通过索引进行查询非常快

选取 NoSQL 的原因:

  • 半结构化数据
  • 动态或灵活的模式
  • 非关系型数据
  • 不需要复杂的联结操作
  • 存储 TB (甚至 PB)级别的数据
  • 高数据密集的工作负载
  • IOPS 高吞吐量

适合 NoSQL 的示例数据:

  • 埋点数据和日志数据
  • 排行榜或者得分数据
  • 临时数据,如购物车
  • 频繁访问的(“热”)表
  • 元数据/查找表
来源及延伸阅读:SQL 或 NoSQL

results matching ""

    No results matching ""