02 manual gradient
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = 1.0
def forward(x):
return x * w
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) * (y_pred - y)
def gradient(x, y):
return 2 * x * (x * w - y)
print("predict (before training)", 4, forward(4))
for epoch in range(10):
for x_val, y_val in zip(x_data, y_data):
grad = gradient(x_val, y_val)
w = w - 0.01 * grad
print("\tgrad: ", x_val, y_val, round(grad, 2))
l = loss(x_val, y_val)
print("progress:", epoch, "w=", round(w, 2), "loss=", round(l, 2))
print("predict (after training)", "4 hours", forward(4))