08.2 dataset loade logistic
import torch
import numpy as np
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
class DiabetesDataset(Dataset):
    """ Diabetes dataset."""
    
    def __init__(self):
        xy = np.loadtxt('./data/diabetes.csv.gz',
                        delimiter=',', dtype=np.float32)
        self.len = xy.shape[0]
        self.x_data = torch.from_numpy(xy[:, 0:-1])
        self.y_data = torch.from_numpy(xy[:, [-1]])
    def __getitem__(self, index):
        return self.x_data[index], self.y_data[index]
    def __len__(self):
        return self.len
dataset = DiabetesDataset()
train_loader = DataLoader(dataset=dataset,
                          batch_size=32,
                          shuffle=True,
                          num_workers=2)
class Model(torch.nn.Module):
    def __init__(self):
        """
        In the constructor we instantiate two nn.Linear module
        """
        super(Model, self).__init__()
        self.l1 = torch.nn.Linear(8, 6)
        self.l2 = torch.nn.Linear(6, 4)
        self.l3 = torch.nn.Linear(4, 1)
        self.sigmoid = torch.nn.Sigmoid()
    def forward(self, x):
        """
        In the forward function we accept a Variable of input data and we must return
        a Variable of output data. We can use Modules defined in the constructor as
        well as arbitrary operators on Variables.
        """
        out1 = self.sigmoid(self.l1(x))
        out2 = self.sigmoid(self.l2(out1))
        y_pred = self.sigmoid(self.l3(out2))
        return y_pred
model = Model()
criterion = torch.nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
for epoch in range(2):
    for i, data in enumerate(train_loader, 0):
        
        inputs, labels = data
        
        inputs, labels = Variable(inputs), Variable(labels)
        
        y_pred = model(inputs)
        
        loss = criterion(y_pred, labels)
        print(epoch, i, loss.data[0])
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()