06 logistic regression
import torch
from torch.autograd import Variable
import torch.nn.functional as F
x_data = Variable(torch.Tensor([[1.0], [2.0], [3.0], [4.0]]))
y_data = Variable(torch.Tensor([[0.], [0.], [1.], [1.]]))
class Model(torch.nn.Module):
def __init__(self):
"""
In the constructor we instantiate nn.Linear module
"""
super(Model, self).__init__()
self.linear = torch.nn.Linear(1, 1)
def forward(self, x):
"""
In the forward function we accept a Variable of input data and we must return
a Variable of output data.
"""
y_pred = F.sigmoid(self.linear(x))
return y_pred
model = Model()
criterion = torch.nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
for epoch in range(1000):
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
print(epoch, loss.data[0])
optimizer.zero_grad()
loss.backward()
optimizer.step()
hour_var = Variable(torch.Tensor([[1.0]]))
print("predict 1 hour ", 1.0, model(hour_var).data[0][0] > 0.5)
hour_var = Variable(torch.Tensor([[7.0]]))
print("predict 7 hours", 7.0, model(hour_var).data[0][0] > 0.5)