05 linear regression
import torch
from torch.autograd import Variable
x_data = Variable(torch.Tensor([[1.0], [2.0], [3.0]]))
y_data = Variable(torch.Tensor([[2.0], [4.0], [6.0]]))
class Model(torch.nn.Module):
def __init__(self):
"""
In the constructor we instantiate two nn.Linear module
"""
super(Model, self).__init__()
self.linear = torch.nn.Linear(1, 1)
def forward(self, x):
"""
In the forward function we accept a Variable of input data and we must return
a Variable of output data. We can use Modules defined in the constructor as
well as arbitrary operators on Variables.
"""
y_pred = self.linear(x)
return y_pred
model = Model()
criterion = torch.nn.MSELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
for epoch in range(500):
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
print(epoch, loss.data[0])
optimizer.zero_grad()
loss.backward()
optimizer.step()
hour_var = Variable(torch.Tensor([[4.0]]))
y_pred = model(hour_var)
print("predict (after training)", 4, model(hour_var).data[0][0])