08.1 dataset loader
import torch
import numpy as np
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
class DiabetesDataset(Dataset):
""" Diabetes dataset."""
def __init__(self):
xy = np.loadtxt('./data/diabetes.csv.gz',
delimiter=',', dtype=np.float32)
self.len = xy.shape[0]
self.x_data = torch.from_numpy(xy[:, 0:-1])
self.y_data = torch.from_numpy(xy[:, [-1]])
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
def __len__(self):
return self.len
dataset = DiabetesDataset()
train_loader = DataLoader(dataset=dataset,
batch_size=32,
shuffle=True,
num_workers=2)
for epoch in range(2):
for i, data in enumerate(train_loader, 0):
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
print(epoch, i, "inputs", inputs.data, "labels", labels.data)