lab 02.3 linear regression tensorflow.org
import tensorflow as tf
W = tf.Variable([.3], tf.float32)
b = tf.Variable([-.3], tf.float32)
x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
linear_model = x * W + b
loss = tf.reduce_sum(tf.square(linear_model - y))
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
x_train = [1, 2, 3, 4]
y_train = [0, -1, -2, -3]
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in range(1000):
sess.run(train, {x: x_train, y: y_train})
curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x: x_train, y: y_train})
print("W: %s b: %s loss: %s" % (curr_W, curr_b, curr_loss))