lab 04.2 multi variable matmul linear regression
import tensorflow as tf
tf.set_random_seed(777)
x_data = [[73., 80., 75.],
[93., 88., 93.],
[89., 91., 90.],
[96., 98., 100.],
[73., 66., 70.]]
y_data = [[152.],
[185.],
[180.],
[196.],
[142.]]
X = tf.placeholder(tf.float32, shape=[None, 3])
Y = tf.placeholder(tf.float32, shape=[None, 1])
W = tf.Variable(tf.random_normal([3, 1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
hypothesis = tf.matmul(X, W) + b
cost = tf.reduce_mean(tf.square(hypothesis - Y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-5)
train = optimizer.minimize(cost)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for step in range(2001):
cost_val, hy_val, _ = sess.run(
[cost, hypothesis, train], feed_dict={X: x_data, Y: y_data})
if step % 10 == 0:
print(step, "Cost: ", cost_val, "\nPrediction:\n", hy_val)
'''
0 Cost: 7105.46
Prediction:
[[ 80.82241058]
[ 92.26364136]
[ 93.70250702]
[ 98.09217834]
[ 72.51759338]]
10 Cost: 5.89726
Prediction:
[[ 155.35159302]
[ 181.85691833]
[ 181.97254944]
[ 194.21760559]
[ 140.85707092]]
...
1990 Cost: 3.18588
Prediction:
[[ 154.36352539]
[ 182.94833374]
[ 181.85189819]
[ 194.35585022]
[ 142.03240967]]
2000 Cost: 3.1781
Prediction:
[[ 154.35881042]
[ 182.95147705]
[ 181.85035706]
[ 194.35533142]
[ 142.036026 ]]
'''