lab 13.3 mnist save restore
import tensorflow as tf
import random
import os
from tensorflow.examples.tutorials.mnist import input_data
tf.set_random_seed(777)
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
learning_rate = 0.001
training_epochs = 15
batch_size = 100
CHECK_POINT_DIR = TB_SUMMARY_DIR = './tb/mnist2'
X = tf.placeholder(tf.float32, [None, 784])
Y = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(X, [-1, 28, 28, 1])
tf.summary.image('input', x_image, 3)
keep_prob = tf.placeholder(tf.float32)
with tf.variable_scope('layer1'):
W1 = tf.get_variable("W", shape=[784, 512],
initializer=tf.contrib.layers.xavier_initializer())
b1 = tf.Variable(tf.random_normal([512]))
L1 = tf.nn.relu(tf.matmul(X, W1) + b1)
L1 = tf.nn.dropout(L1, keep_prob=keep_prob)
tf.summary.histogram("X", X)
tf.summary.histogram("weights", W1)
tf.summary.histogram("bias", b1)
tf.summary.histogram("layer", L1)
with tf.variable_scope('layer2'):
W2 = tf.get_variable("W", shape=[512, 512],
initializer=tf.contrib.layers.xavier_initializer())
b2 = tf.Variable(tf.random_normal([512]))
L2 = tf.nn.relu(tf.matmul(L1, W2) + b2)
L2 = tf.nn.dropout(L2, keep_prob=keep_prob)
tf.summary.histogram("weights", W2)
tf.summary.histogram("bias", b2)
tf.summary.histogram("layer", L2)
with tf.variable_scope('layer3'):
W3 = tf.get_variable("W", shape=[512, 512],
initializer=tf.contrib.layers.xavier_initializer())
b3 = tf.Variable(tf.random_normal([512]))
L3 = tf.nn.relu(tf.matmul(L2, W3) + b3)
L3 = tf.nn.dropout(L3, keep_prob=keep_prob)
tf.summary.histogram("weights", W3)
tf.summary.histogram("bias", b3)
tf.summary.histogram("layer", L3)
with tf.variable_scope('layer4'):
W4 = tf.get_variable("W", shape=[512, 512],
initializer=tf.contrib.layers.xavier_initializer())
b4 = tf.Variable(tf.random_normal([512]))
L4 = tf.nn.relu(tf.matmul(L3, W4) + b4)
L4 = tf.nn.dropout(L4, keep_prob=keep_prob)
tf.summary.histogram("weights", W4)
tf.summary.histogram("bias", b4)
tf.summary.histogram("layer", L4)
with tf.variable_scope('layer5'):
W5 = tf.get_variable("W", shape=[512, 10],
initializer=tf.contrib.layers.xavier_initializer())
b5 = tf.Variable(tf.random_normal([10]))
hypothesis = tf.matmul(L4, W5) + b5
tf.summary.histogram("weights", W5)
tf.summary.histogram("bias", b5)
tf.summary.histogram("hypothesis", hypothesis)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=hypothesis, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
tf.summary.scalar("loss", cost)
last_epoch = tf.Variable(0, name='last_epoch')
summary = tf.summary.merge_all()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
writer = tf.summary.FileWriter(TB_SUMMARY_DIR)
writer.add_graph(sess.graph)
global_step = 0
saver = tf.train.Saver()
checkpoint = tf.train.get_checkpoint_state(CHECK_POINT_DIR)
if checkpoint and checkpoint.model_checkpoint_path:
try:
saver.restore(sess, checkpoint.model_checkpoint_path)
print("Successfully loaded:", checkpoint.model_checkpoint_path)
except:
print("Error on loading old network weights")
else:
print("Could not find old network weights")
start_from = sess.run(last_epoch)
print('Start learning from:', start_from)
for epoch in range(start_from, training_epochs):
print('Start Epoch:', epoch)
avg_cost = 0
total_batch = int(mnist.train.num_examples / batch_size)
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
feed_dict = {X: batch_xs, Y: batch_ys, keep_prob: 0.7}
s, _ = sess.run([summary, optimizer], feed_dict=feed_dict)
writer.add_summary(s, global_step=global_step)
global_step += 1
avg_cost += sess.run(cost, feed_dict=feed_dict) / total_batch
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost))
print("Saving network...")
sess.run(last_epoch.assign(epoch + 1))
if not os.path.exists(CHECK_POINT_DIR):
os.makedirs(CHECK_POINT_DIR)
saver.save(sess, CHECK_POINT_DIR + "/model", global_step=i)
print('Learning Finished!')
correct_prediction = tf.equal(tf.argmax(hypothesis, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('Accuracy:', sess.run(accuracy, feed_dict={
X: mnist.test.images, Y: mnist.test.labels, keep_prob: 1}))
r = random.randint(0, mnist.test.num_examples - 1)
print("Label: ", sess.run(tf.argmax(mnist.test.labels[r:r + 1], 1)))
print("Prediction: ", sess.run(
tf.argmax(hypothesis, 1), feed_dict={X: mnist.test.images[r:r + 1], keep_prob: 1}))
'''
...
Successfully loaded: ./tb/mnist/model-549
Start learning from: 2
Epoch: 2
...
tensorboard --logdir tb/
Starting TensorBoard b'41' on port 6006
(You can navigate to http://10.0.1.4:6006)
'''