lab 04.1 multi variable linear regression
import tensorflow as tf
tf.set_random_seed(777)
x1_data = [73., 93., 89., 96., 73.]
x2_data = [80., 88., 91., 98., 66.]
x3_data = [75., 93., 90., 100., 70.]
y_data = [152., 185., 180., 196., 142.]
x1 = tf.placeholder(tf.float32)
x2 = tf.placeholder(tf.float32)
x3 = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)
w1 = tf.Variable(tf.random_normal([1]), name='weight1')
w2 = tf.Variable(tf.random_normal([1]), name='weight2')
w3 = tf.Variable(tf.random_normal([1]), name='weight3')
b = tf.Variable(tf.random_normal([1]), name='bias')
hypothesis = x1 * w1 + x2 * w2 + x3 * w3 + b
cost = tf.reduce_mean(tf.square(hypothesis - Y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-5)
train = optimizer.minimize(cost)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for step in range(2001):
cost_val, hy_val, _ = sess.run([cost, hypothesis, train],
feed_dict={x1: x1_data, x2: x2_data, x3: x3_data, Y: y_data})
if step % 10 == 0:
print(step, "Cost: ", cost_val, "\nPrediction:\n", hy_val)
'''
0 Cost: 19614.8
Prediction:
[ 21.69748688 39.10213089 31.82624626 35.14236832 32.55316544]
10 Cost: 14.0682
Prediction:
[ 145.56100464 187.94958496 178.50236511 194.86721802 146.08096313]
...
1990 Cost: 4.9197
Prediction:
[ 148.15084839 186.88632202 179.6293335 195.81796265 144.46044922]
2000 Cost: 4.89449
Prediction:
[ 148.15931702 186.8805542 179.63194275 195.81971741 144.45298767]
'''