38.3. 物化视图
PostgreSQL里的物化视图像视图那样使用规则系统, 但是用类表的形式保存结果。
CREATE MATERIALIZED VIEW mymatview AS SELECT * FROM mytab;
和:
CREATE TABLE mymatview AS SELECT * FROM mytab;
之间最主要的区别是物化视图不能随后直接被更新,并且创建物化视图的查询就像视图的查询存储那样存储, 所以新数据可以用下面命令产生:
REFRESH MATERIALIZED VIEW mymatview;
PostgreSQL系统目录中有关物化视图的信息和表或视图的信息一样。 所以对于解析器,物化视图是一个关系,就像一个表或一个视图。当在查询中引用一个物化视图时, 数据直接从物化视图返回,就像从一个表返回;规则只是用来填充物化视图。
当访问存储在物化视图中的数据时,通常比直接访问底层表或通过一个视图更快, 数据并不总是当前的;然而有时不需要当前数据。考虑一个记录销售的表:
CREATE TABLE invoice (
invoice_no integer PRIMARY KEY,
seller_no integer, -- 销售人员的ID
invoice_date date, -- 销售日期
invoice_amt numeric(13,2) -- 销售数量
);
如果人们希望能够快速的图形化历史销售数据,他们可能想要汇总, 可能不关心当前未完成的数据:
CREATE MATERIALIZED VIEW sales_summary AS
SELECT
seller_no,
invoice_date,
sum(invoice_amt)::numeric(13,2) as sales_amt
FROM invoice
WHERE invoice_date < CURRENT_DATE
GROUP BY
seller_no,
invoice_date
ORDER BY
seller_no,
invoice_date;
CREATE UNIQUE INDEX sales_summary_seller
ON sales_summary (seller_no, invoice_date);
物化视图可以用来在为销售人员创建的控制面板上显示图形。 可以使用下面的SQL语句在每天晚上更新统计数据:
REFRESH MATERIALIZED VIEW sales_summary;
物化视图的另一个用处是允许对远程系统中的数据快速访问,通过一个外部数据封装器。 下面是一个简单的使用file_fdw
的例子,有计时, 但是因为这是使用的在本地系统的缓存,外部数据封装器到远程系统的性能可能更大。
CREATE EXTENSION file_fdw;
CREATE SERVER local_file FOREIGN DATA WRAPPER file_fdw;
CREATE FOREIGN TABLE words (word text NOT NULL)
SERVER local_file
OPTIONS (filename '/etc/dictionaries-common/words');
CREATE MATERIALIZED VIEW wrd AS SELECT * FROM words;
CREATE UNIQUE INDEX wrd_word ON wrd (word);
CREATE EXTENSION pg_trgm;
CREATE INDEX wrd_trgm ON wrd USING gist (word gist_trgm_ops);
VACUUM ANALYZE wrd;
现在让我们拼写检查一个单词。直接使用file_fdw
:
SELECT count(*) FROM words WHERE word = 'caterpiler';
count
-------
0
(1 row)
计划是:
Aggregate (cost=4125.19..4125.20 rows=1 width=0) (actual time=26.013..26.014 rows=1 loops=1)
-> Foreign Scan on words (cost=0.00..4124.70 rows=196 width=0) (actual time=26.011..26.011 rows=0 loops=1)
Filter: (word = 'caterpiler'::text)
Rows Removed by Filter: 99171
Foreign File: /etc/dictionaries-common/words
Foreign File Size: 938848
Total runtime: 26.081 ms
如果使用物化视图,查询更快速:
Aggregate (cost=4.44..4.45 rows=1 width=0) (actual time=0.074..0.074 rows=1 loops=1)
-> Index Only Scan using wrd_word on wrd (cost=0.42..4.44 rows=1 width=0) (actual time=0.071..0.071 rows=0 loops=1)
Index Cond: (word = 'caterpiler'::text)
Heap Fetches: 0
Total runtime: 0.119 ms
无论哪种方式,这个词的拼写是错误的,所以我们看看我们想要的。还是使用file_fdw
:
SELECT word FROM words ORDER BY word <-> 'caterpiler' LIMIT 10;
word
---------------
cater
caterpillar
Caterpillar
caterpillars
caterpillar's
Caterpillar's
caterer
caterer's
caters
catered
(10 rows)
Limit (cost=2195.70..2195.72 rows=10 width=32) (actual time=218.904..218.906 rows=10 loops=1)
-> Sort (cost=2195.70..2237.61 rows=16765 width=32) (actual time=218.902..218.904 rows=10 loops=1)
Sort Key: ((word <-> 'caterpiler'::text))
Sort Method: top-N heapsort Memory: 25kB
-> Foreign Scan on words (cost=0.00..1833.41 rows=16765 width=32) (actual time=0.046..200.965 rows=99171 loops=1)
Foreign File: /etc/dictionaries-common/words
Foreign File Size: 938848
Total runtime: 218.966 ms
使用物化视图:
Limit (cost=0.28..1.02 rows=10 width=9) (actual time=24.916..25.079 rows=10 loops=1)
-> Index Scan using wrd_trgm on wrd (cost=0.28..7383.70 rows=99171 width=9) (actual time=24.914..25.076 rows=10 loops=1)
Order By: (word <-> 'caterpiler'::text)
Total runtime: 25.884 ms
如果你能允许定期更新远程数据到本地数据库,会带来可观的性能优势。