55.2. 扩展性
传统上,实现一种新的索引访问方法意味着大量的艰苦工作。必须理解数据库的内部工作机制,比如锁的机制和预写日志。 GiST接口有一个高层的抽像,只要求访问方法的实现者实现被访问的数据类型的语意。 GiST层本身会处理并发,日志和搜索树结构等任务。
不要把这个扩展性和其它标准搜索树的扩展性混淆在一起,比如它们所能处理的数据等方面。 比如,PostgreSQL支持可扩展的 B-trees和哈希索引。 这就意味着可以用PostgreSQL在任意你需要的数据类型上建立 B-tree或哈希 。 但是 B-trees 只支持范围谓词(<
、=
、>
),而哈希仅支持相等查询。
所以,如果你用PostgreSQL B-tree 索引了一个图像集,那么你就只能发出类似 "图像 x 和图像 y 相等吗"、"图像 x 是不是比图像 y 小"、"图像 x 是否大于图像 y"这样的查询。 依赖于你在这个环境下定义的"等于"、"小于"、"大于"的含义,上面这些查询可能有意义。 但是,使用一个基于GiST的索引,你可以创建一些方法来提出和领域相关的问题,比如"找出所有马的图像"或者"找出所有曝光过头的图像"。
要让一种GiST访问方法跑起来只要实现几个用户定义方法,这些方法定义了树里面的键字的行为。 当然,为了支持那些怪异的查询,这些方法也会相当怪异,但是对于所有标准的查询(B-tree,R-tree 等),他们是相当直接的。 简单说,GiST组合了扩展性和通用性,以及代码复用和一个干净的界面。
GiST用的索引操作符类必须提供7个方法,第8个方法是可选的。 索引的正确性通过正确的实现same
, consistent
和union
方法来确保,而索引的效率(大小和速度)依赖于penalty
和picksplit
。 剩下的2个方法是compress
和decompress
,它们允许索引持有的内部数据和它索引的对象数据的类型不同。 叶子节点的类型必须和被索引数据相同,而其他节点可以是任意C结构(但是,这里仍然必须遵守PostgreSQL中数据类型的规则,对可变大小数据请参考varlena
)。 如果树的内部数据类型在SQL级别存在,可以在CREATE OPERATOR CLASS
命令中使用STORAGE
选项。 可选的第8个方法是distance
,如果希望操作符类支持排序的扫描(最邻近搜索),就需要提供这个方法。
consistent
给定一个索引项p
和查询值q
,这个函数决定是否索引项和查询"一致"; 也即是,对任何该索引项代表的行,谓词 "_indexed_column_``_indexable_operator_
q
"是否可能为真? 对叶子索引项这等价于测试索引条件,对内部树节点它指示是否有必要扫描该节点代表的索引子树。 当结果为true
,必须还要返回recheck
标志位。这指示了谓词是精确为真还是只是可能为真。 如果recheck
= false
,索引已经精确地测试了谓词条件, 如果recheck
= true
,相应的行仅仅是一个候选匹配。 这种情况下,系统还将自动对实际的行值进行评价_indexable_operator_
以检查是否真的匹配。 这一规则允许GiST同时支持无损索引和有损索引。
这个函数的SQL声明必须按照如下方式。
CREATE OR REPLACE FUNCTION my_consistent(internal, data_type, smallint, oid, internal)
RETURNS bool
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
C模块中的对应代码可以参考下面的骨架代码。
Datum my_consistent(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_consistent);
Datum
my_consistent(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
data_type *query = PG_GETARG_DATA_TYPE_P(1);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
/* Oid subtype = PG_GETARG_OID(3); */
bool *recheck = (bool *) PG_GETARG_POINTER(4);
data_type *key = DatumGetDataType(entry->key);
bool retval;
/*
* 根据strategy,key和query决定返回值。
*
* 使用GIST_LEAF(entry)可以感知函数在索引树的什么位置被调用,比如这在支持=操作符时很方便
* (可以在非叶子节点检查非空的union()和在叶子节点检测等价性)。
*/
*recheck = true; /* 如果是精确检查则为假 */
PG_RETURN_BOOL(retval);
}
这里key
是索引中的一个元素,而query
是要在索引中查找的值。 StrategyNumber
参数指示要应用操作符类中的哪个操作符, 它必须是CREATE OPERATOR CLASS
命令指定的操作符编号之一。 依赖于在操作符类中包含的操作符,query
的数据类型可能和操作符不同,但是上面的骨架代码假设不是这种情况。
union
这个方法用于合并树中的信息。输入一个项目的集合,这个函数生成一个代表所有给定项目的新的索引项目。
这个函数的SQL声明必须按照如下方式。
CREATE OR REPLACE FUNCTION my_union(internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
C模块中的对应代码可以参考下面的骨架代码。
Datum my_union(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_union);
Datum
my_union(PG_FUNCTION_ARGS)
{
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
GISTENTRY *ent = entryvec->vector;
data_type *out,
*tmp,
*old;
int numranges,
i = 0;
numranges = entryvec->n;
tmp = DatumGetDataType(ent[0].key);
out = tmp;
if (numranges == 1)
{
out = data_type_deep_copy(tmp);
PG_RETURN_DATA_TYPE_P(out);
}
for (i = 1; i < numranges; i++)
{
old = out;
tmp = DatumGetDataType(ent[i].key);
out = my_union_implementation(out, tmp);
}
PG_RETURN_DATA_TYPE_P(out);
}
正如你看到的,这个骨架代码中我们处理了符合union(X, Y, Z) = union(union(X, Y), Z)
的数据类型。 在GiST支持方法中实现适当的union算法也可以很容易地支持其它不符合这一条件的数据类型。
union
的实现函数应该返回一个由palloc()
分配的内存的指针。 不能简单地直接返回输入的东西。
compress
把数据项转换为适合在索引页中存储的格式。
这个函数的SQL声明必须按照如下方式。
CREATE OR REPLACE FUNCTION my_compress(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
C模块中的对应代码可以参考下面的骨架代码。
Datum my_compress(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_compress);
Datum
my_compress(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
GISTENTRY *retval;
if (entry->leafkey)
{
/* 把entry->key替换为压缩的版本 */
compressed_data_type *compressed_data = palloc(sizeof(compressed_data_type));
/* 从entry->key填充*compressed_data */
retval = palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(compressed_data),
entry->rel, entry->page, entry->offset, FALSE);
}
else
{
/* 通常不需要对非叶子节点做任何处理 */
retval = entry;
}
PG_RETURN_POINTER(retval);
}
当然,为了压缩叶子节点,你需要把_compressed_data_type_
适配到特定的数据类型。
根据你的需求,可能还需要关心如何压缩NULL
值,例如存储为(Datum) 0
,就像gist_circle_compress
那样。
decompress
与compress
函数正好相反。 把数据项的索引表现转换为可以被数据库处理的格式。
这个函数的SQL声明必须按照如下方式。
CREATE OR REPLACE FUNCTION my_decompress(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
C模块中的对应代码可以参考下面的骨架代码。
Datum my_decompress(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_decompress);
Datum
my_decompress(PG_FUNCTION_ARGS)
{
PG_RETURN_POINTER(PG_GETARG_POINTER(0));
}
上面的骨架代码适合不需要解压缩的场合。
penalty
返回插入新项目到特定分支的"代价"值。 项目将会被插入到树中penalty
最小的路径。 penalty
的返回值应该是非负数。 如果返回了负数将会被当作0处理。
这个函数的SQL声明必须按照如下方式。
CREATE OR REPLACE FUNCTION my_penalty(internal, internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT; -- in some cases penalty functions need not be strict
C模块中的对应代码可以参考下面的骨架代码。
Datum my_penalty(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_penalty);
Datum
my_penalty(PG_FUNCTION_ARGS)
{
GISTENTRY *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
GISTENTRY *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
float *penalty = (float *) PG_GETARG_POINTER(2);
data_type *orig = DatumGetDataType(origentry->key);
data_type *new = DatumGetDataType(newentry->key);
*penalty = my_penalty_implementation(orig, new);
PG_RETURN_POINTER(penalty);
}
penalty
函数对索引的性能非常重要。 在插入阶段,它可以用来决定把新增加项目插入到哪个分支。 在查询阶段,越平衡的索引,检索速度越快。
picksplit
如果需要分裂一个索引页面的时候,这个函数决定页面中哪些项目保存在旧页面里,哪些移动到新页面里。
这个函数的SQL声明必须按照如下方式。
CREATE OR REPLACE FUNCTION my_picksplit(internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
C模块中的对应代码可以参考下面的骨架代码。
Datum my_picksplit(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_picksplit);
Datum
my_picksplit(PG_FUNCTION_ARGS)
{
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
OffsetNumber maxoff = entryvec->n - 1;
GISTENTRY *ent = entryvec->vector;
GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
int i,
nbytes;
OffsetNumber *left,
*right;
data_type *tmp_union;
data_type *unionL;
data_type *unionR;
GISTENTRY **raw_entryvec;
maxoff = entryvec->n - 1;
nbytes = (maxoff + 1) * sizeof(OffsetNumber);
v->spl_left = (OffsetNumber *) palloc(nbytes);
left = v->spl_left;
v->spl_nleft = 0;
v->spl_right = (OffsetNumber *) palloc(nbytes);
right = v->spl_right;
v->spl_nright = 0;
unionL = NULL;
unionR = NULL;
/* 初始化项目数组 */
raw_entryvec = (GISTENTRY **) malloc(entryvec->n * sizeof(void *));
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
raw_entryvec[i] = &(entryvec->vector[i]);
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
int real_index = raw_entryvec[i] - entryvec->vector;
tmp_union = DatumGetDataType(entryvec->vector[real_index].key);
Assert(tmp_union != NULL);
/*
* 选择放置索引项目的位置,并相应地更新unionL和unionR。
* 追加项目到v_spl_left或者v_spl_right,并注意处理计数器。
*/
if (my_choice_is_left(unionL, curl, unionR, curr))
{
if (unionL == NULL)
unionL = tmp_union;
else
unionL = my_union_implementation(unionL, tmp_union);
*left = real_index;
++left;
++(v->spl_nleft);
}
else
{
/*
* 右边做相同处理
*/
}
}
v->spl_ldatum = DataTypeGetDatum(unionL);
v->spl_rdatum = DataTypeGetDatum(unionR);
PG_RETURN_POINTER(v);
}
像penalty
一样,picksplit
函数对索引的性能也非常重要, 设计合适的penalty
和picksplit
函数直接关系到实现良好性能的GiST索引。
same
2个索引项目等价时为真,否则为假。
这个函数的SQL声明必须按照如下方式。
CREATE OR REPLACE FUNCTION my_same(internal, internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
C模块中的对应代码可以参考下面的骨架代码。
Datum my_same(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_same);
Datum
my_same(PG_FUNCTION_ARGS)
{
prefix_range *v1 = PG_GETARG_PREFIX_RANGE_P(0);
prefix_range *v2 = PG_GETARG_PREFIX_RANGE_P(1);
bool *result = (bool *) PG_GETARG_POINTER(2);
*result = my_eq(v1, v2);
PG_RETURN_POINTER(result);
}
由于历史的原因,same
函数并不是单纯地返回布尔值, 而是将标志位存储到由第3个参数指向的位置。
distance
给定一个索引项目p
和查询值q
,这个函数决定这2者之间的"距离"。 如果操作符类包含任何排序的操作符,必须要提供这个函数。 通过先返回最小"距离"值的索引项目,可以实现使用了排序操作符的查询,因此结果必须和操作符的语义一致。 对一个叶子索引项目,结果只是到索引项目的距离;对内部项目,结果必须是任何子节点项目的最小距离。
这个函数的SQL声明必须按照如下方式。
CREATE OR REPLACE FUNCTION my_distance(internal, data_type, smallint, oid)
RETURNS float8
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;
C模块中的对应代码可以参考下面的骨架代码。
Datum my_distance(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_distance);
Datum
my_distance(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
data_type *query = PG_GETARG_DATA_TYPE_P(1);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
/* Oid subtype = PG_GETARG_OID(3); */
data_type *key = DatumGetDataType(entry->key);
double retval;
/*
* determine return value as a function of strategy, key and query.
*/
PG_RETURN_FLOAT8(retval);
}
distance
函数的参数,除了recheck标志位,其他和consistent
函数相同。 一个叶子节点的距离值必须是精确的,因为一旦返回了元组就没有办法再进行排序了。 对内部节点允许一定程度的近似,只要不大于任何一个子节点的实际距离。 比如,在地理应用中到矩形边界的距离就足够了。 结果值可以是任何有限的float8
类型值。 (无穷和负无穷用于在内部作为空等情况使用,因此,不建议distance
返回这些值。)
所有的GiST支持方法通常在短周期内存上下文中被调用,也就是说,在每个元组被处理后CurrentMemoryContext
都会被重置。 因此不太需要担心pfree被palloc出来的所有东西。 然而,有些情况下,需要支持方法在多次调用间缓存数据。 为了实现这个目的,需要在fcinfo->flinfo->fn_mcxt
中分配长生命周期的数据, 并且在fcinfo->flinfo->fn_extra
中保存其指针。 这样的数据在索引操作(比如:单个的GiST索引扫描,索引创建或索引元组插入)完成后仍然有效。 在覆盖fn_extra
的值前要小心的pfree掉先前的值,否则在操作期间内存泄漏会越积越多。