Auto-Encoder Example

Build a 2 layers auto-encoder with TensorFlow to compress images to a lower latent space and then reconstruct them.

Auto-Encoder Overview

ae

References:

MNIST Dataset Overview

This example is using MNIST handwritten digits. The dataset contains 60,000 examples for training and 10,000 examples for testing. The digits have been size-normalized and centered in a fixed-size image (28x28 pixels) with values from 0 to 1. For simplicity, each image has been flattened and converted to a 1-D numpy array of 784 features (28*28).

MNIST Dataset

More info: http://yann.lecun.com/exdb/mnist/

from __future__ import division, print_function, absolute_import

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
Extracting /tmp/data/train-images-idx3-ubyte.gz
Extracting /tmp/data/train-labels-idx1-ubyte.gz
Extracting /tmp/data/t10k-images-idx3-ubyte.gz
Extracting /tmp/data/t10k-labels-idx1-ubyte.gz
# Training Parameters
learning_rate = 0.01
num_steps = 30000
batch_size = 256

display_step = 1000
examples_to_show = 10

# Network Parameters
num_hidden_1 = 256 # 1st layer num features
num_hidden_2 = 128 # 2nd layer num features (the latent dim)
num_input = 784 # MNIST data input (img shape: 28*28)

# tf Graph input (only pictures)
X = tf.placeholder("float", [None, num_input])

weights = {
    'encoder_h1': tf.Variable(tf.random_normal([num_input, num_hidden_1])),
    'encoder_h2': tf.Variable(tf.random_normal([num_hidden_1, num_hidden_2])),
    'decoder_h1': tf.Variable(tf.random_normal([num_hidden_2, num_hidden_1])),
    'decoder_h2': tf.Variable(tf.random_normal([num_hidden_1, num_input])),
}
biases = {
    'encoder_b1': tf.Variable(tf.random_normal([num_hidden_1])),
    'encoder_b2': tf.Variable(tf.random_normal([num_hidden_2])),
    'decoder_b1': tf.Variable(tf.random_normal([num_hidden_1])),
    'decoder_b2': tf.Variable(tf.random_normal([num_input])),
}
# Building the encoder
def encoder(x):
    # Encoder Hidden layer with sigmoid activation #1
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
                                   biases['encoder_b1']))
    # Encoder Hidden layer with sigmoid activation #2
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
                                   biases['encoder_b2']))
    return layer_2


# Building the decoder
def decoder(x):
    # Decoder Hidden layer with sigmoid activation #1
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
                                   biases['decoder_b1']))
    # Decoder Hidden layer with sigmoid activation #2
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
                                   biases['decoder_b2']))
    return layer_2

# Construct model
encoder_op = encoder(X)
decoder_op = decoder(encoder_op)

# Prediction
y_pred = decoder_op
# Targets (Labels) are the input data.
y_true = X

# Define loss and optimizer, minimize the squared error
loss = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(loss)

# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
# Start Training
# Start a new TF session
sess = tf.Session()

# Run the initializer
sess.run(init)

# Training
for i in range(1, num_steps+1):
    # Prepare Data
    # Get the next batch of MNIST data (only images are needed, not labels)
    batch_x, _ = mnist.train.next_batch(batch_size)

    # Run optimization op (backprop) and cost op (to get loss value)
    _, l = sess.run([optimizer, loss], feed_dict={X: batch_x})
    # Display logs per step
    if i % display_step == 0 or i == 1:
        print('Step %i: Minibatch Loss: %f' % (i, l))
Step 1: Minibatch Loss: 0.438300
Step 1000: Minibatch Loss: 0.146586
Step 2000: Minibatch Loss: 0.130722
Step 3000: Minibatch Loss: 0.117178
Step 4000: Minibatch Loss: 0.109027
Step 5000: Minibatch Loss: 0.102582
Step 6000: Minibatch Loss: 0.099183
Step 7000: Minibatch Loss: 0.095619
Step 8000: Minibatch Loss: 0.089006
Step 9000: Minibatch Loss: 0.087125
Step 10000: Minibatch Loss: 0.083930
Step 11000: Minibatch Loss: 0.077512
Step 12000: Minibatch Loss: 0.077137
Step 13000: Minibatch Loss: 0.073983
Step 14000: Minibatch Loss: 0.074218
Step 15000: Minibatch Loss: 0.074492
Step 16000: Minibatch Loss: 0.074374
Step 17000: Minibatch Loss: 0.070909
Step 18000: Minibatch Loss: 0.069438
Step 19000: Minibatch Loss: 0.068245
Step 20000: Minibatch Loss: 0.068402
Step 21000: Minibatch Loss: 0.067113
Step 22000: Minibatch Loss: 0.068241
Step 23000: Minibatch Loss: 0.062454
Step 24000: Minibatch Loss: 0.059754
Step 25000: Minibatch Loss: 0.058687
Step 26000: Minibatch Loss: 0.059107
Step 27000: Minibatch Loss: 0.055788
Step 28000: Minibatch Loss: 0.057263
Step 29000: Minibatch Loss: 0.056391
Step 30000: Minibatch Loss: 0.057672
# Testing
# Encode and decode images from test set and visualize their reconstruction.
n = 4
canvas_orig = np.empty((28 * n, 28 * n))
canvas_recon = np.empty((28 * n, 28 * n))
for i in range(n):
    # MNIST test set
    batch_x, _ = mnist.test.next_batch(n)
    # Encode and decode the digit image
    g = sess.run(decoder_op, feed_dict={X: batch_x})

    # Display original images
    for j in range(n):
        # Draw the generated digits
        canvas_orig[i * 28:(i + 1) * 28, j * 28:(j + 1) * 28] = batch_x[j].reshape([28, 28])
    # Display reconstructed images
    for j in range(n):
        # Draw the generated digits
        canvas_recon[i * 28:(i + 1) * 28, j * 28:(j + 1) * 28] = g[j].reshape([28, 28])

print("Original Images")     
plt.figure(figsize=(n, n))
plt.imshow(canvas_orig, origin="upper", cmap="gray")
plt.show()

print("Reconstructed Images")
plt.figure(figsize=(n, n))
plt.imshow(canvas_recon, origin="upper", cmap="gray")
plt.show()
Original Images

png

Reconstructed Images

png

results matching ""

    No results matching ""