LOGISTIC REGRESSION WITH CUSTOM DATA
import os
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
print ("Packages loaded")
Packages loaded
Load data
cwd = os.getcwd()
loadpath = cwd + "/data/custom_data.npz"
l = np.load(loadpath)
print (l.files)
trainimg = l['trainimg']
trainlabel = l['trainlabel']
testimg = l['testimg']
testlabel = l['testlabel']
use_gray = l['use_gray']
ntrain = trainimg.shape[0]
nclass = trainlabel.shape[1]
dim = trainimg.shape[1]
ntest = testimg.shape[0]
print ("%d train images loaded" % (ntrain))
print ("%d test images loaded" % (ntest))
print ("%d dimensional input" % (dim))
print ("%d classes" % (nclass))
['trainlabel', 'imgsize', 'trainimg', 'testimg', 'testlabel', 'use_gray']
52 train images loaded
35 test images loaded
4096 dimensional input
2 classes
Define network
tf.set_random_seed(0)
learning_rate = 0.001
training_epochs = 1000
batch_size = 10
display_step = 100
x = tf.placeholder("float", [None, dim])
y = tf.placeholder("float", [None, nclass])
W = tf.Variable(tf.zeros([dim, nclass]), name = 'weights')
b = tf.Variable(tf.zeros([nclass]))
Define functions
WEIGHT_DECAY_FACTOR = 1
l2_loss = tf.add_n([tf.nn.l2_loss(v)
for v in tf.trainable_variables()])
_pred = tf.nn.softmax(tf.matmul(x, W) + b)
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(_pred)
, reduction_indices=1))
cost = cost + WEIGHT_DECAY_FACTOR*l2_loss
optm = tf.train.GradientDescentOptimizer(
learning_rate).minimize(cost)
_corr = tf.equal(tf.argmax(_pred, 1), tf.argmax(y, 1))
accr = tf.reduce_mean(tf.cast(_corr, tf.float32))
init = tf.initialize_all_variables()
print ("Functions ready")
Functions ready
Optimize
sess = tf.Session()
sess.run(init)
for epoch in range(training_epochs):
avg_cost = 0.
num_batch = int(ntrain/batch_size)
for i in range(num_batch):
randidx = np.random.randint(ntrain, size=batch_size)
batch_xs = trainimg[randidx, :]
batch_ys = trainlabel[randidx, :]
sess.run(optm, feed_dict={x: batch_xs, y: batch_ys})
avg_cost += sess.run(cost
, feed_dict={x: batch_xs, y: batch_ys})/num_batch
if epoch % display_step == 0:
print ("Epoch: %03d/%03d cost: %.9f" %
(epoch, training_epochs, avg_cost))
train_acc = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys})
print (" Training accuracy: %.3f" % (train_acc))
test_acc = sess.run(accr, feed_dict={x: testimg, y: testlabel})
print (" Test accuracy: %.3f" % (test_acc))
print ("Optimization Finished!")
Epoch: 000/1000 cost: 0.626751423
Training accuracy: 0.600
Test accuracy: 0.686
Epoch: 100/1000 cost: 0.438359487
Training accuracy: 0.800
Test accuracy: 0.714
Epoch: 200/1000 cost: 0.367508155
Training accuracy: 0.900
Test accuracy: 0.686
Epoch: 300/1000 cost: 0.363990796
Training accuracy: 1.000
Test accuracy: 0.714
Epoch: 400/1000 cost: 0.406193763
Training accuracy: 0.900
Test accuracy: 0.714
Epoch: 500/1000 cost: 0.400928861
Training accuracy: 0.900
Test accuracy: 0.714
Epoch: 600/1000 cost: 0.366956294
Training accuracy: 0.900
Test accuracy: 0.686
Epoch: 700/1000 cost: 0.334192312
Training accuracy: 1.000
Test accuracy: 0.686
Epoch: 800/1000 cost: 0.392353541
Training accuracy: 1.000
Test accuracy: 0.714
Epoch: 900/1000 cost: 0.383330226
Training accuracy: 1.000
Test accuracy: 0.714
Optimization Finished!
CLOSE SESSION
sess.close()
print ("Session closed.")
Session closed.