Neural style
import scipy.io
import numpy as np
import os
import scipy.misc
import matplotlib.pyplot as plt
import tensorflow as tf
%matplotlib inline
print ("Packages loaded")
Packages loaded
Define VGG
def net(data_path, input_image):
layers = (
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
'relu3_3', 'conv3_4', 'relu3_4', 'pool3',
'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
'relu5_3', 'conv5_4', 'relu5_4'
)
data = scipy.io.loadmat(data_path)
mean = data['normalization'][0][0][0]
mean_pixel = np.mean(mean, axis=(0, 1))
weights = data['layers'][0]
net = {}
current = input_image
for i, name in enumerate(layers):
kind = name[:4]
if kind == 'conv':
kernels, bias = weights[i][0][0][0][0]
kernels = np.transpose(kernels, (1, 0, 2, 3))
bias = bias.reshape(-1)
current = _conv_layer(current, kernels, bias)
elif kind == 'relu':
current = tf.nn.relu(current)
elif kind == 'pool':
current = _pool_layer(current)
net[name] = current
assert len(net) == len(layers)
return net, mean_pixel, layers
def _conv_layer(input, weights, bias):
conv = tf.nn.conv2d(input, tf.constant(weights), strides=(1, 1, 1, 1),
padding='SAME')
return tf.nn.bias_add(conv, bias)
def _pool_layer(input):
return tf.nn.max_pool(input, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1),
padding='SAME')
def preprocess(image, mean_pixel):
return image - mean_pixel
def unprocess(image, mean_pixel):
return image + mean_pixel
def imread(path):
return scipy.misc.imread(path).astype(np.float)
def imsave(path, img):
img = np.clip(img, 0, 255).astype(np.uint8)
scipy.misc.imsave(path, img)
print ("Network for VGG ready")
Network for VGG ready
cwd = os.getcwd()
VGG_PATH = cwd + "/data/imagenet-vgg-verydeep-19.mat"
CONTENT_PATH = cwd + "/images/flash.jpg"
CONTENT_LAYER = 'relu2_2'
STYLE_LAYERS = ('relu1_1', 'relu2_1', 'relu3_1', 'relu4_1', 'relu5_1')
raw_content = scipy.misc.imread(CONTENT_PATH)
plt.figure(0, figsize=(10, 5))
plt.imshow(raw_content)
plt.title("Original content image")
plt.show()
content_image = raw_content.astype(np.float)
content_shape = (1,) + content_image.shape
with tf.Graph().as_default(), tf.Session() as sess, tf.device('/gpu:0'):
image = tf.placeholder('float', shape=content_shape)
nets, content_mean_pixel, _ = net(VGG_PATH, image)
content_image_pre = np.array([preprocess(content_image, content_mean_pixel)])
content_features = nets[CONTENT_LAYER].eval(feed_dict={image: content_image_pre})
print (" Type of 'features' is ", type(content_features))
print (" Shape of 'features' is %s" % (content_features.shape,))
for i in range(5):
plt.figure(i, figsize=(10, 5))
plt.matshow(content_features[0, :, :, i], cmap=plt.cm.gray, fignum=i)
plt.title("%d-layer content feature" % (i))
plt.colorbar()
plt.show()
(" Type of 'features' is ", <type 'numpy.ndarray'>)
Shape of 'features' is (1, 160, 160, 128)
/usr/lib/pymodules/python2.7/matplotlib/collections.py:548: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
if self._edgecolors == 'face':
STYLE_PATH = cwd + "/images/style1.jpg"
raw_style = scipy.misc.imread(STYLE_PATH)
plt.figure(0, figsize=(10, 5))
plt.imshow(raw_style)
plt.title("Original style image")
plt.show()
style_image = raw_style.astype(np.float)
style_shape = (1,) + style_image.shape
style_features = dict()
with tf.Graph().as_default(), tf.Session() as sess, tf.device('/gpu:0'):
image = tf.placeholder('float', shape=style_shape)
nets, _, _ = net(VGG_PATH, image)
style_image_pre = np.array([preprocess(style_image, content_mean_pixel)])
for idx, layer in enumerate(STYLE_LAYERS):
curr_features = nets[layer].eval(feed_dict={image: style_image_pre})
curr_features_vec = np.reshape(curr_features, (-1, curr_features.shape[3]))
gram = np.matmul(curr_features_vec.T, curr_features_vec) / curr_features_vec.size
style_features.update({layer: gram})
plt.figure(idx, figsize=(10, 5))
plt.matshow(curr_features[0, :, :, 0], cmap=plt.cm.gray, fignum=idx)
plt.title("%d style feature" % (idx))
plt.show()
Optimize
content_weight = 5
style_weight = 10
tv_weight = 100
learning_rate = 5.
iterations = 1000
def _tensor_size(tensor):
from operator import mul
return reduce(mul, (d.value for d in tensor.get_shape()), 1)
with tf.Graph().as_default(), tf.Session() as sess, tf.device('/gpu:0'):
initial = tf.random_normal(content_shape) * 0.256
image2opt = tf.Variable(initial)
nets, mean_pixel, _ = net(VGG_PATH, image2opt)
content_loss = content_weight * (2 * tf.nn.l2_loss(
nets[CONTENT_LAYER] - content_features) / content_features.size)
style_losses = []
for style_layer in STYLE_LAYERS:
layer = nets[style_layer]
_, height, width, number = layer.get_shape()
size = height * width * number
feats = tf.reshape(layer, (-1, number.value))
gram = tf.matmul(tf.transpose(feats), feats) / size.value
style_gram = style_features[style_layer]
style_losses.append(2 * tf.nn.l2_loss(gram - style_gram) / style_gram.size)
style_loss = style_weight * reduce(tf.add, style_losses)
tv_y_size = _tensor_size(image2opt[:,1:,:,:])
tv_x_size = _tensor_size(image2opt[:,:,1:,:])
tv_loss = tv_weight * 2 * (
(tf.nn.l2_loss(image2opt[:,1:,:,:] - image2opt[:,:content_shape[1]-1,:,:]) /
tv_y_size) +
(tf.nn.l2_loss(image2opt[:,:,1:,:] - image2opt[:,:,:content_shape[2]-1,:]) /
tv_x_size))
loss = content_loss + style_loss + tv_loss
optm = tf.train.AdamOptimizer(learning_rate).minimize(loss)
sess.run(tf.initialize_all_variables())
for i in range(iterations):
optm.run()
if i % 100 == 0 or i == iterations-1:
print ("[%d/%d]" % (i, iterations))
out = image2opt.eval()
stylized_img = out[0, :, :, :] + content_mean_pixel
stylized_img = np.clip(stylized_img, 0, 255).astype('uint8')
plt.figure(0, figsize=(10, 5))
plt.imshow(stylized_img)
plt.title("[%d] Stylized image" % (i))
plt.show()
out = image2opt.eval()
print ("done")
[0/1000]
[100/1000]
[200/1000]
[300/1000]
[400/1000]
[500/1000]
[600/1000]
[700/1000]
[800/1000]
[900/1000]
Plot final image
plt.figure(0, figsize=(10, 5))
plt.imshow(raw_content)
plt.title("Original content image")
plt.show()
plt.figure(0, figsize=(10, 5))
plt.imshow(raw_style)
plt.title("Original style image")
plt.show()
stylized_img = out[0, :, :, :] + content_mean_pixel
stylized_img = np.clip(stylized_img, 0, 255).astype('uint8')
plt.figure(1, figsize=(10, 5))
plt.imshow(stylized_img)
plt.title("Stylized image")
plt.show()