实现弹性网络回归
弹性网络回归是一种回归类型,通过将 L1 和 L2 正则化项添加到损失函数,将套索回归与岭回归相结合。
做好准备
在前两个秘籍之后实现弹性网络回归应该是直截了当的,因此我们将在虹膜数据集上的多元线性回归中实现这一点,而不是像以前那样坚持二维数据。我们将使用花瓣长度,花瓣宽度和萼片宽度来预测萼片长度。
操作步骤
我们按如下方式处理秘籍:
- 首先,我们加载必要的库并初始化图,如下所示:
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
sess = tf.Session()
- 现在,我们加载数据。这次,
x
数据的每个元素将是三个值的列表而不是一个。使用以下代码:
iris = datasets.load_iris()
x_vals = np.array([[x[1], x[2], x[3]] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data])
- 接下来,我们声明批量大小,占位符,变量和模型输出。这里唯一的区别是我们更改
x
数据占位符的大小规范,取三个值而不是一个,如下所示:
batch_size = 50
learning_rate = 0.001
x_data = tf.placeholder(shape=[None, 3], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
A = tf.Variable(tf.random_normal(shape=[3,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))
model_output = tf.add(tf.matmul(x_data, A), b)
- 对于弹性网络,损失函数具有部分斜率的 L1 和 L2 范数。我们创建这些术语,然后将它们添加到损失函数中,如下所示:
elastic_param1 = tf.constant(1.)
elastic_param2 = tf.constant(1.)
l1_a_loss = tf.reduce_mean(tf.abs(A))
l2_a_loss = tf.reduce_mean(tf.square(A))
e1_term = tf.multiply(elastic_param1, l1_a_loss)
e2_term = tf.multiply(elastic_param2, l2_a_loss)
loss = tf.expand_dims(tf.add(tf.add(tf.reduce_mean(tf.square(y_target - model_output)), e1_term), e2_term), 0)
- 现在,我们可以初始化变量,声明我们的优化函数,运行训练循环,并拟合我们的系数,如下所示:
init = tf.global_variables_initializer()
sess.run(init)
my_opt = tf.train.GradientDescentOptimizer(learning_rate)
train_step = my_opt.minimize(loss)
loss_vec = []
for i in range(1000):
rand_index = np.random.choice(len(x_vals), size=batch_size)
rand_x = x_vals[rand_index]
rand_y = np.transpose([y_vals[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(temp_loss[0])
if (i+1)%250==0:
print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)) + ' b = ' + str(sess.run(b)))
print('Loss = ' + str(temp_loss))
- 这是代码的输出:
Step #250 A = [[ 0.42095602]
[ 0.1055888 ]
[ 1.77064979]] b = [[ 1.76164341]]
Loss = [ 2.87764359]
Step #500 A = [[ 0.62762028]
[ 0.06065864]
[ 1.36294949]] b = [[ 1.87629771]]
Loss = [ 1.8032167]
Step #750 A = [[ 0.67953539]
[ 0.102514 ]
[ 1.06914485]] b = [[ 1.95604002]]
Loss = [ 1.33256555]
Step #1000 A = [[ 0.6777274 ]
[ 0.16535147]
[ 0.8403284 ]] b = [[ 2.02246833]]
Loss = [ 1.21458709]
- 现在,我们可以观察训练迭代的损失,以确保算法收敛,如下所示:
plt.plot(loss_vec, 'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()
我们得到上面代码的以下图:
图 10:在 1,000 次训练迭代中绘制的弹性净回归损失
工作原理
这里实现弹性网络回归以及多元线性回归。我们可以看到,利用损失函数中的这些正则化项,收敛速度比先前的秘籍慢。正则化就像在损失函数中添加适当的术语一样简单。