简化为线性回归
SVM 可用于拟合线性回归。在本节中,我们将探讨如何使用 TensorFlow 执行此操作。
做好准备
可以将相同的最大边际概念应用于拟合线性回归。我们可以考虑最大化包含最多(x
,y
)点的边距,而不是最大化分隔类的边距。为了说明这一点,我们将使用相同的虹膜数据集,并表明我们可以使用此概念来拟合萼片长度和花瓣宽度之间的线。
相应的损失函数类似于:
这里,ε
是边距宽度的一半,如果一个点位于该区域,则损失等于 0。
操作步骤
我们按如下方式处理秘籍:
- 首先,我们加载必要的库,启动图,然后加载虹膜数据集。之后,我们将数据集拆分为训练集和测试集,以显示两者的损失。使用以下代码:
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
sess = tf.Session()
iris = datasets.load_iris()
x_vals = np.array([x[3] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data])
train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]
对于此示例,我们将数据拆分为训练集和测试集。将数据拆分为三个数据集也很常见,其中包括验证集。我们可以使用此验证集来验证我们在训练它们时不会过拟合模型。
- 让我们声明我们的批量大小,占位符和变量,并创建我们的线性模型,如下所示:
batch_size = 50
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
A = tf.Variable(tf.random_normal(shape=[1,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))
model_output = tf.add(tf.matmul(x_data, A), b)
- 现在,我们宣布我们的损失函数。如前文所述,损失函数实现为
ε = 0.5
。请记住,epsilon 是我们的损失函数的一部分,它允许软边距而不是硬边距:
epsilon = tf.constant([0.5])
loss = tf.reduce_mean(tf.maximum(0., tf.subtract(tf.abs(tf.subtract(model_output, y_target)), epsilon)))
- 我们创建一个优化器并接下来初始化我们的变量,如下所示:
my_opt = tf.train.GradientDescentOptimizer(0.075)
train_step = my_opt.minimize(loss)
init = tf.global_variables_initializer()
sess.run(init)
- 现在,我们迭代 200 次训练迭代并保存训练和测试损失以便以后绘图:
train_loss = []
test_loss = []
for i in range(200):
rand_index = np.random.choice(len(x_vals_train), size=batch_size)
rand_x = np.transpose([x_vals_train[rand_index]])
rand_y = np.transpose([y_vals_train[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
temp_train_loss = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_train]), y_target: np.transpose([y_vals_train])})
train_loss.append(temp_train_loss)
temp_test_loss = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_test]), y_target: np.transpose([y_vals_test])})
test_loss.append(temp_test_loss)
if (i+1)%50==0:
print('-----------')
print('Generation: ' + str(i))
print('A = ' + str(sess.run(A)) + ' b = ' + str(sess.run(b)))
print('Train Loss = ' + str(temp_train_loss))
print('Test Loss = ' + str(temp_test_loss))
- 这导致以下输出:
Generation: 50
A = [[ 2.20651722]] b = [[ 2.71290684]]
Train Loss = 0.609453
Test Loss = 0.460152
-----------
Generation: 100
A = [[ 1.6440177]] b = [[ 3.75240564]]
Train Loss = 0.242519
Test Loss = 0.208901
-----------
Generation: 150
A = [[ 1.27711761]] b = [[ 4.3149066]]
Train Loss = 0.108192
Test Loss = 0.119284
-----------
Generation: 200
A = [[ 1.05271816]] b = [[ 4.53690529]]
Train Loss = 0.0799957
Test Loss = 0.107551
- 我们现在可以提取我们找到的系数,并获得最佳拟合线的值。出于绘图目的,我们也将获得边距的值。使用以下代码:
[[slope]] = sess.run(A)
[[y_intercept]] = sess.run(b)
[width] = sess.run(epsilon)
best_fit = []
best_fit_upper = []
best_fit_lower = []
for i in x_vals:
best_fit.append(slope*i+y_intercept)
best_fit_upper.append(slope*i+y_intercept+width)
best_fit_lower.append(slope*i+y_intercept-width)
- 最后,这里是用拟合线和训练测试损失绘制数据的代码:
plt.plot(x_vals, y_vals, 'o', label='Data Points')
plt.plot(x_vals, best_fit, 'r-', label='SVM Regression Line', linewidth=3)
plt.plot(x_vals, best_fit_upper, 'r--', linewidth=2)
plt.plot(x_vals, best_fit_lower, 'r--', linewidth=2)
plt.ylim([0, 10])
plt.legend(loc='lower right')
plt.title('Sepal Length vs Petal Width')
plt.xlabel('Petal Width')
plt.ylabel('Sepal Length')
plt.show()
plt.plot(train_loss, 'k-', label='Train Set Loss')
plt.plot(test_loss, 'r--', label='Test Set Loss')
plt.title('L2 Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('L2 Loss')
plt.legend(loc='upper right')
plt.show()
上述代码的图如下:
图 5:虹膜数据上有 0.5 个边缘的 SVM 回归(萼片长度与花瓣宽度)
以下是训练迭代中的训练和测试损失:
图 6:训练和测试集上每代的 SVM 回归损失
工作原理
直觉上,我们可以将 SVM 回归看作是一个函数,试图尽可能多地在2ε
宽度范围内拟合点。该线的拟合对该参数有些敏感。如果我们选择太小的 epsilon,算法将无法适应边距中的许多点。如果我们选择太大的 epsilon,将会有许多行能够适应边距中的所有数据点。我们更喜欢较小的 epsilon,因为距离边缘较近的点比较远的点贡献较少的损失。