TFLearn 核心层

TFLearn 在tflearn.layers.core模块中提供以下层:

层类 描述
input_data 该层用于指定神经网络的输入层。
fully_connected 该层用于指定一个层,其中所有神经元都连接到前一层中的所有神经元。
dropout 该层用于指定损失正则化。输入元素由1/keep_prob缩放,同时保持预期的总和不变。
custom_layer 此层用于指定要应用于输入的自定义函数。此类包装我们的自定义函数并将该函数显示为层。
reshape 此层将输入重新整形为指定形状的输出。
flatten 该层将输入张量转换为 2D 张量。
activation 该层将指定的激活函数应用于输入张量。
single_unit 该层将线性函数应用于输入。
highway 该层实现了完全连接的公路函数。
one_hot_encoding 此层将数字标签转换为二元向量单热编码表示。
time_distributed 该层将指定的函数应用于输入张量的每个时间步长。
multi_target_data 此层创建并连接多个占位符,特别是在层使用来自多个源的目标时使用。

results matching ""

    No results matching ""