Keras 卷积层

这些层为卷积神经网络实现了不同类型的卷积,采样和裁剪操作:

层名称 描述
Conv1D 该层将单个空间或时间维度上的卷积应用于输入。
Conv2D 该层将二维卷积应用于输入。
SeparableConv2D 该层在每个输入通道上应用深度方式空间卷积,然后是逐点卷积,将所得到的输出通道混合在一起。
Conv2DTranspose 该层将卷积的形状恢复为产生这些卷积的输入的形状。
Conv3D 该层将三维卷积应用于输入。
Cropping1D 该层沿时间维度裁剪输入数据。
Cropping2D 此层沿空间维度裁剪输入数据,例如图像的宽度和高度。
Cropping3D 该层沿着时空裁剪输入数据,即所有三维。
UpSampling1D 该层按时间轴指定的时间重复输入数据。
UpSampling2D 此层沿两个维度按指定时间重复输入数据的行和列维度。
UpSampling3D 该层按三个维度的指定时间重复输入数据的三个维度。
ZeroPadding1D 该层将零添加到时间维度的开头和结尾。
ZeroPadding2D 此层将行和列的零添加到 2D 张量的顶部,底部,左侧或右侧。
ZeroPadding3D 该层将零添加到 3D 张量的三个维度。

results matching ""

    No results matching ""