定义输入,参数和其他变量

在我们使用 TensorFlow 构建和训练回归模型之前,让我们定义一些重要的变量和操作。我们从X_trainy_train中找出输出和输入变量的数量,然后使用这些数字来定义xx_tensor),yy_tensor),权重(w)和偏置(b):

num_outputs = y_train.shape[1] 
num_inputs = X_train.shape[1]

x_tensor = tf.placeholder(dtype=tf.float32, 
                   shape=[None, num_inputs], 
                   name="x") 
y_tensor = tf.placeholder(dtype=tf.float32, 
                   shape=[None, num_outputs], 
                   name="y")

w = tf.Variable(tf.zeros([num_inputs,num_outputs]), 
                dtype=tf.float32, 
                name="w") 
b = tf.Variable(tf.zeros([num_outputs]), 
                dtype=tf.float32, 
                name="b")
  • x_tensor被定义为具有可变行和num_inputs列的形状,并且在我们的示例中列数仅为 1
  • y_tensor定义为具有可变行和num_outputs列的形状,列数在我们的示例中只有一个
  • w被定义为维度num_inputs x num_outputs的变量,在我们的例子中是 1 x 1
  • b被定义为维度num_outputs的变量,在我们的例子中是一个

results matching ""

    No results matching ""