Keras 核心层

Keras 核心层实现基本操作,几乎用于各种网络架构。下表给出了 Keras 2 提供的层的摘要和说明:

层名称 描述
Dense 这是一个简单的完全连接的神经网络层。该层生成以下函数的输出:激活(输入 x 权重 + 偏差),其中激活是指传递给层的激活函数,默认为None
Activation 该层将指定的激活函数应用于输出。该层生成以下函数的输出:**激活(输入),其中激活是指传递给该层的激活函数。以下激活函数可用于实例化层:softmaxeluselusoftplussoftsignrelutanhsigmoidhard_sigmoidlinear
Dropout 该层以指定的损失率将损失正则化应用于输入。
Flatten 该层使输入变平,即对于三维输入,它变平并产生一维输出。
Reshape 此层将输入转换为指定的形状。
Permute 此层按照指定的模式重新排序输入尺寸。
RepeatVector 该层以给定次数重复输入。因此,如果输入是 2D 张量的形状(#samples,#feature)并且该层被赋予n次重复,那么输出将是 3D 张量的形状(#samples,n, #特征)。
Lambda 该层将提供的函数包装为层。因此,输入通过提供的自定义函数传递以产生输出。该层为 Keras 用户提供了最终的可扩展性,可以将自己的自定义函数添加为层。
ActivityRegularization 该层将 L1 或 L2 或两种正则化的组合应用于其输入。该层应用于激活层的输出或具有激活函数的层的输出。
Masking 此层在输入张量中屏蔽或跳过这些时间步长,其中输入张量中的所有值都等于作为层参数提供的屏蔽值。

results matching ""

    No results matching ""